COMPARISON OF BLOOD CHOLESTEROL PROFILES BEFORE AND AFTER THE MEASUREMENTS OF MAXIMUM AEROBIC CAPACITY (VO$_2$MAX)

A.R. Shadiqin
JPOK FKIP Universitas Lambung Mangkurat
Jalan Brigjend H. Hasan Basry, Banjarmasin, Indonesia
e-mail: shadiqin_ar@gmail.com

Abstract. This study aimed to compare the blood cholesterol profile, before and after the measurement of maximum aerobic capacity (VO$_2$max) in the students of Sports and Healthy Department (JPOK) FKIP UNLAM. Variables in this study consist of lipid profiles, including total cholesterol, HDL, LDL, triglyceride and VO$_2$max. Operationally, VO$_2$max referred in this study is the maximum volume of oxygen that can be consumed per minute, as measured at progressive run (Bleep Test). The method used in this study is pre-experimental with one group pretest-posttest design. The study showed that there are changes in blood cholesterol profile after the measurement of VO$_2$max, shown by significant decrease of total cholesterol variable, increased HDL, and decreased LDL. Changes in triglyceride variable showed no significant decrease despite the statistic differences. Specific HDL sub-class increasing after exercise is a constructive lipoprotein sub-class whereas LDL is destructive lipoproteins sub-class that might damage the body. Therefore, an increase in HDL and decrease in LDL found in this study appears to be advantageous and consequently might alter the risk of coronary heart disease.

Keywords: cholesterol profile, Maximum Aerobic Capacity (VO$_2$max)

INTRODUCTION

Most of busy and dynamic individuals underestimate healthy macro-nutrition requirement and consumed fast-food meals instead, where both quantity and quality is uncontrolled. Metabolically, not all of these options provide healthy responses, and they frequently complain pain in their chest (angina) which is one indicator of increasing cholesterol level (Soeharto I, 2002:108). Any type of medical treatment requires a substantial fund. On the other hand, specific
drugs may drastically decrease cholesterol levels, thus became insufficient for the body. Despite of body requirement, abnormal cholesterol level may adversely affect cardiac performance. Heart serves as a pump in blood circulation, therefore blood cholesterol profiles before and after measurement of maximum aerobic capacity still need to be examined.

Precursor forming steroid hormone that the body need is derived from cholesterol (Vander, Sherman, Luciano, 2001:267; Vella CA, Kravitsz L, Jarot JM, 2002:1). Types of these hormones are: cortisol, adrenaline, testosterone, estrogen, etc. Structurally, cholesterol is a required component in the body system. If a person’s blood cholesterol is reduced up to 30 percent of the normal range, cell structures disorder possibly to occur (B Sears, 1997:183). High saturated fat diet may increase blood cholesterol concentrations for 15 to 25%. This condition is due to the enhancing fat accumulation in liver which increase KoA-acetyl hepatic cell to produce cholesterol (Gayton & Hall, 1996:1087). Therefore, one possible way to decrease blood cholesterol concentration is diet of low saturated fat and low cholesterol (B Sears, 1997:183). The concept of energy metabolism to maintain cholesterol at normal concentrations is sporadic. This mainly because busy lifestyle and the idea of instant health without particular treatments. Although many individuals perform certain physical activities, presumably they are not suitably programmed. Otherwise, even if such activities are correct, cholesterol concentration remains increase due to the imbalance nutritional factors with energy expenses. Thus, more frequent pains is coming instead of healthy condition as a result of the increasing cholesterol.

Based on the above description, maintenance as well as efforts to reduce blood cholesterol profile that provide healthy responses for each individual are still need to be studied. Increasing cholesterol ingested daily may slightly increase plasma concentrations. However, such increase inhibits 3-hydroxy-3-metilglutaril KoA reductase enzyme (Gayton & Hall, 1997:1087) to form endogenous cholesterol. This mechanism plays as an intrinsic feedback control system to prevent an excessive increase of plasma cholesterol concentrations. As a result, plasma cholesterol concentrations usually do not increase or decrease more than ± 15% by changing the amount of cholesterol in the diet, although individual responses differ markedly (Vander, Sherman, Luciano, 2001:610). Most of extra-busy workers tend to ignore this balance mechanism where diet of high saturated fat and cholesterol is preferable shortcut. Expensive medical treatment became a "trend" of consumptive lifestyle in expectation of instant recovery. However, the fact that patients with related complaints were increased and in inverse comparison with per capita income. Therefore, revealing physical performance patterns that is safe, inexpensive and able to maintain blood cholesterol profile is a priority.

The solution of those conditions, there should be a careful assessment of physical activities that are safe and easy as well as favorably effect blood cholesterol concentrations reduction. A specific distance of aerobic run, very popular physical workout, is able to improve physical fitness (EA Dowling, 2001:47). Thus, it is necessary to study their effects on blood cholesterol profile, especially after an individual reaches his/her anaerobic threshold. Consequently, the concept of energy metabolism can be used as a pattern to determine blood cholesterol profile for each individual, without having to go through expensive treatments.

The formulation of this study is: How does the blood cholesterol profile before and after measurement of maximum aerobic capacity (VO2max)?

The objective of this study is to compare blood cholesterol profiles before and after
measurement of maximum aerobic capacity (VO$_2$max)

The results of this study are expected to enrich reference literatures of physical activity that is cheap, safe, and beneficial as well as reduce the concentration of cholesterol in a person’s blood; and may provide efficient alternative efforts of physical fitness and blood cholesterol concentrations balance.

RESEARCH METHOD

This study used physiobiologic paradigm with the concept of energy metabolism; the logic is built based on the application of the predominant energy in continuous aerobic physical performance and its impact on health status, reflected in cholesterol profile in the blood.

This is an experimental study, which aimed to determine the effect of exercise workload (in the form of VO$_2$max test) on blood cholesterol profile. The design of this study was Pretest-Posttest Only Design (Suryabrata S, 2003:105). Operational data collection is described as the following diagram.

T-1 ----------- BLEEP TEST -----------T-2

Description: T-1 = Preliminary Test or control data; BLEEP TEST is the Treatment, T-2 = Final Test.

This study used healthy male students as the population, with characteristics; physically and psychologically healthy, age ranged between 20 -2 4 yearold. The population is derived from students of Jurusan Pendidikan Olahraga & Kesehatan FKIP Unlam Banjarmasin. Total sample is 12 people.

1. Sampling Technique: Twelve qualified students are chosen with systematic random sampling technique. Subsequently, assigned both as experimental and control.
2. Sample Criteria: Sample criteria in this study are factors that influence research results. Thus, the following factors are defined; general physical status (age, weight, height) and health status

3. Unit of Analysis: The unit of analysis in this study is blood extracted from vein (vena cubiti). This peripheral blood test is based on the fact that observed components through the analysis unit may circulate and recirculate (AR Shadiqin, 2001:56).

The variables of this study are; dependent variable: blood cholesterol level and Bleep Test; control Variable; SGOT, SGPT, BUN, and creatinine. To give a clear understanding about the study, the Conceptual Definition of Variables and Operational Definition of Variables are given below:

Conceptual Definition of Variables

Cholesterol: A lipid-related compound found in tissue and manufactured in the liver (Kent M, 1994). Blood cholesterol level can be decreased with exercise and dietary fat.

Maximum oxygen volume; Kent M (1994) stated that “maximum aerobic force quantitatively equivalent to the maximum amount of oxygen that can be consumed per unit time during elevating intensity up to exhaustion, expressed as VO$_2$max”.

Operational Definition of Variables

Blood cholesterol level is a value that reflects the amount of cholesterol circulating in the blood vessels known through clinical test of analysis unit.

VO$_2$max is the maximum amount of oxygen in milliliters, which can be used in one minute per kilogram of body weight, measured through the Bleep Test.

The collected data will be analyzed using computer statistical methods (SPSS-18) with t-test analysis.

RESULT AND DISCUSSION

Description Of Data

The data in the following tables is the result of lipid profile measurement consisting
of total cholesterol (TK), low density lipoprotein (LDL), high density lipoprotein (HDL).

Table 1. Measurement results of Lipid Profile before treatment

<table>
<thead>
<tr>
<th>No.</th>
<th>TK</th>
<th>LDL</th>
<th>HDL</th>
<th>TG</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>208.8</td>
<td>149.8</td>
<td>45</td>
<td>70.2</td>
</tr>
<tr>
<td>2</td>
<td>117.8</td>
<td>98</td>
<td>45</td>
<td>64.8</td>
</tr>
<tr>
<td>3</td>
<td>179.2</td>
<td>95.9</td>
<td>75</td>
<td>45.2</td>
</tr>
<tr>
<td>4</td>
<td>195.2</td>
<td>134.9</td>
<td>54</td>
<td>41.5</td>
</tr>
<tr>
<td>5</td>
<td>118.6</td>
<td>53.6</td>
<td>58</td>
<td>45</td>
</tr>
<tr>
<td>6</td>
<td>191.7</td>
<td>119.9</td>
<td>62</td>
<td>49</td>
</tr>
<tr>
<td>7</td>
<td>174.6</td>
<td>113</td>
<td>37</td>
<td>83</td>
</tr>
<tr>
<td>8</td>
<td>159.4</td>
<td>102.2</td>
<td>50</td>
<td>36</td>
</tr>
<tr>
<td>9</td>
<td>100.2</td>
<td>44.6</td>
<td>49</td>
<td>33</td>
</tr>
<tr>
<td>10</td>
<td>150.2</td>
<td>77.4</td>
<td>67</td>
<td>49</td>
</tr>
<tr>
<td>11</td>
<td>158.8</td>
<td>95.3</td>
<td>63</td>
<td>75</td>
</tr>
<tr>
<td>12</td>
<td>173.2</td>
<td>90.2</td>
<td>75</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>160.64</td>
<td>97.5</td>
<td>56.67</td>
</tr>
</tbody>
</table>

Description:
No : Number of subjects
TK : Total Cholesterol
LDL : Low density lipoprotein
HDL : High density lipoprotein
TG : Triglyceride

Table 2. Measurement results of VO2max and Lipid Profile after treatment

<table>
<thead>
<tr>
<th>No.</th>
<th>VO2max</th>
<th>TK</th>
<th>LDL</th>
<th>HDL</th>
<th>TG</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>38.5</td>
<td>198</td>
<td>144.5</td>
<td>48</td>
<td>70</td>
</tr>
<tr>
<td>2</td>
<td>40.1</td>
<td>116</td>
<td>95</td>
<td>46</td>
<td>62.5</td>
</tr>
<tr>
<td>3</td>
<td>38.2</td>
<td>167.2</td>
<td>90.2</td>
<td>72</td>
<td>47</td>
</tr>
<tr>
<td>4</td>
<td>40.2</td>
<td>169</td>
<td>129</td>
<td>60</td>
<td>41.2</td>
</tr>
<tr>
<td>5</td>
<td>40.5</td>
<td>117</td>
<td>53</td>
<td>58</td>
<td>45</td>
</tr>
<tr>
<td>6</td>
<td>39.1</td>
<td>176</td>
<td>98</td>
<td>66</td>
<td>48</td>
</tr>
<tr>
<td>7</td>
<td>41.2</td>
<td>174</td>
<td>100</td>
<td>47</td>
<td>71</td>
</tr>
<tr>
<td>8</td>
<td>39.8</td>
<td>155.8</td>
<td>100.1</td>
<td>54</td>
<td>36</td>
</tr>
<tr>
<td>9</td>
<td>43.2</td>
<td>100</td>
<td>44</td>
<td>50</td>
<td>32</td>
</tr>
<tr>
<td>10</td>
<td>37.5</td>
<td>148.5</td>
<td>75</td>
<td>67</td>
<td>47</td>
</tr>
<tr>
<td>11</td>
<td>40.5</td>
<td>139</td>
<td>85</td>
<td>64</td>
<td>71</td>
</tr>
<tr>
<td>12</td>
<td>38.5</td>
<td>158</td>
<td>79</td>
<td>77</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>39.77</td>
<td>151.54</td>
<td>91.07</td>
<td>59.08</td>
</tr>
</tbody>
</table>

Description:
No : Number of subjects
TK : Total Cholesterol
LDL : Low density lipoprotein
HDL : High density lipoprotein
TG : Triglyceride

Normality Test

Table 3. Result of Normality Test with One-Sample Kolmogorov-Smirnov Test.

<table>
<thead>
<tr>
<th></th>
<th>TK Awal</th>
<th>TK Akhir</th>
<th>LDL Awal</th>
<th>LDL Akhir</th>
<th>HDL Awal</th>
<th>HDL Akhir</th>
<th>TG Awal</th>
<th>TG Akhir</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Normal Parameters</td>
<td>Mean</td>
<td>160.642</td>
<td>151.542</td>
<td>97.900</td>
<td>91.067</td>
<td>56.67</td>
<td>59.08</td>
<td>52.475</td>
</tr>
<tr>
<td>Most Extreme Differences</td>
<td>Absolute</td>
<td>.145</td>
<td>.142</td>
<td>.150</td>
<td>.207</td>
<td>.125</td>
<td>.144</td>
<td>.250</td>
</tr>
<tr>
<td></td>
<td>Positive</td>
<td>.143</td>
<td>.134</td>
<td>.110</td>
<td>.207</td>
<td>.125</td>
<td>.144</td>
<td>.250</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>-.145</td>
<td>-.142</td>
<td>-.150</td>
<td>-.116</td>
<td>-.101</td>
<td>-.103</td>
<td>-.120</td>
</tr>
<tr>
<td>Kolmogorov-Smirnov Z</td>
<td>.502</td>
<td>.492</td>
<td>.518</td>
<td>.716</td>
<td>.434</td>
<td>.498</td>
<td>.865</td>
<td>.850</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.962</td>
<td>.969</td>
<td>.951</td>
<td>.684</td>
<td>.992</td>
<td>.965</td>
<td>.443</td>
<td>.465</td>
</tr>
</tbody>
</table>

Description:

a. Test distribution is Normal.
b. Calculated from data

Based on Table 3, it is known that:

1. Kolmogorov-smirnov value of preliminary TK variable is 0.502 with significance level 0.962 > 0.05, thus it has normal distribution.
2. Kolmogorov-smirnov value of final TK variable is 0.492 with significance level 0.969 > 0.05, thus it has normal distribution.
3. Kolmogorov-smirnov value of preliminary LDL variable is 0.518 with significance level 0.951 > 0.05, thus it has normal distribution.
4. Kolmogorov-smirnov value of final LDL variable is 0.716 with significance level 0.684 > 0.05, maka berdistribusi normal.
5. Kolmogorov-smirnov value of preliminary HDL variable is 0.434 with significance level 0.992 > 0.05, thus it has normal distribution.
6. Kolmogorov-smirnov value of final HDL variable is 0.498 with significance level 0.965 > 0.05, thus it has normal distribution.
7. Kolmogorov-smirnov value of preliminary TG variable is 0.865 with significance level 0.443 > 0.05, thus it has normal distribution.
8. Kolmogorov-smirnov value of final TG variable is 0.850 with significance level 0.465 > 0.05, thus it has normal distribution.

Significance level of X_1, X_2, X_3, X_4, X_5, X_6 and Y variables is > 0.05, thus data from the four variables are normal distributed.
Homogenity Test

Table 4. Result of homogeneity test with *Chi-Square* Test.

<table>
<thead>
<tr>
<th></th>
<th>TK Awal</th>
<th>TK Akhir</th>
<th>LDL Awal</th>
<th>LDL Akhir</th>
<th>HDL Awal</th>
<th>HDL Akhir</th>
<th>TG Awal</th>
<th>TG Akhir</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-square</td>
<td>.000²</td>
<td>.000²</td>
<td>.000²</td>
<td>1.333³</td>
<td>.000²</td>
<td>.833²</td>
<td>1.333³</td>
<td></td>
</tr>
<tr>
<td>Df</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>9</td>
<td>11</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>Asymp. Sig.</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>.998</td>
<td>1.000</td>
<td>.998</td>
<td></td>
</tr>
</tbody>
</table>

Description:
1. 12 cells (100.0%) have expected frequencies less than 5.
 The minimum expected cell frequency is 1.0.
2. 10 cells (100.0%) have expected frequencies less than 5.
 The minimum expected cell frequency is 1.2.
3. 11 cells (100.0%) have expected frequencies less than 5.
 The minimum expected cell frequency is 1.1.

Based on table 4 it is known that:
1. Chi-Square value of preliminary TK variable is: 0.000 with significance level 1.000 > 0.05, thus it is homogenous.
2. Chi-Square value of final TK variable is: 0.000 with significance level 1.000 > 0.05, thus it is homogenous.
3. Chi-Square value of preliminary LDL variable is: 0.000 with significance level 1.000 > 0.05, thus it is homogenous.
4. Chi-Square value of final LDL variable is: 0.000 with significance level 1.000 > 0.05, thus it is homogenous.
5. Chi-Square value of preliminary HDL variable is: 1.333 with significance level 0.998 > 0.05, thus it is homogenous.
6. Chi-Square value of final HDL variable is: 0.000 with significance level 1.000 > 0.05, thus it is homogenous.
7. Chi-Square value of preliminary TG variable is: 0.833 with significance level 1.000 > 0.05, thus it is homogenous.
8. Chi-Square value of final TG variable is: 1.333 with significance level 0.988 > 0.05, thus it is homogenous.

Significance level of X_1, X_2, X_3, X_4, X_5, X_6 and Y is > 0.05, it is concluded that data from the seven variables are homogenous.

Hypothesis Test

t-test was used for hypotheses testing, establishing the similarity and difference of two average values using two-side test (right-side and left-side tests). The hypotheses tested are as follows:

$H_0 : \mu_{X_1} = \mu_{X_2}$

$H_1 : \mu_{X_1} > \mu_{X_2}$

Test Criteria: “Accept H_0 if $t < t_{(1-a)}$ and reject H_0 if t have any other values. Degrees of freedom for the t distribution is $(n_1 + n_2 - 2)$ with probability $(1-a)$” (Sudjana, 2005: 238-241).

Hypotheses testing of compared variables:

1. Preliminary test result of Total Cholesterol (KT_0):
 Final test result of Total Cholesterol (KT_1)
 $H_0 = KT_0 : KT_1 = < 0$ insignificant.
 $H_1 = KT_0 : KT_1 = > 0$ significant.
 Conclusion:
 t-count = $-3.597 > t$ table $(11; 0.025) = 2.201$, H_0 is rejected, thus, decrease in total cholesterol after treatment is significant.

2. HDL$_0$ (preliminary test result) : HDL$_1$ (final test result).
$H_0 = \text{HDL}_0 : \text{HDL}_1 = < 0 \text{ insignificant}$

$H_1 = \text{HDL}_0 : \text{HDL}_1 = > 0 \text{ significant}$

Conclusion:

$t\text{-count} = 2.504 > t\text{ table } (11; 0.025) = 2.201,$

H_0 is rejected, thus increase in HDL$_1$ (after treatment) is significant.

3. LDL$_0$: LDL$_1$

$H_0 = \text{LDL}_0 : \text{LDL}_1 = < 0 \text{ insignificant}$.

$H_1 = \text{LDL}_0 : \text{LDL}_1 = > 0 \text{ significant}$.

Conclusion:

$t\text{-count} = -3.764 > t\text{ table } (11; 0.025) = 2.201$

H_0 is rejected, thus, decrease in LDL$_1$ (after treatment) is significant.

4. Triglyceride preliminary test (Tg_0) : Tg_1

(Triglyceride final test)

$H_0 = \text{Tg}_0 : \text{Tg}_1 = < 0 \text{ insignificant}$.

$H_1 = \text{Tg}_0 : \text{Tg}_1 = > 0 \text{ significant}$.

Conclusion:

$t\text{-count} = -1.605 < t\text{ table } (11; 0.025) = 2.201$

H_0 is accepted, thus decrease in Triglyceride after treatment is insignificant.

Discussion

This study used both normality and homogeneity tests. The results indicate that research samples are in normal distribution where homogeneity analysis result in homogenous conclusion. Thus, the conditions of analysis were met and may proceed to hypothesis testing.

The study results showed a significant decrease in total cholesterol, and high density lipoprotein (HDL) increased significantly immediately after the attainment of maximum aerobic capacity of the subjects. Using standard examination (clinical test) showed that low density lipoprotein (LDL) level was decreased significantly. Changes in triglyceride variable showed no significant decrease although statistically differ, shown in smaller average value of triglyceride final test results (after treatment). Thus, in this study, aerobic exercise shown by measurements using maximum aerobic capacity, is not only dramatically alters cholesterol level but also become significant due to the favorable changes in the distribution of lipoprotein sub-class.

The above mentioned specific sub-class is similar to increased HDL and decreased LDL after exercise. It is known that HDL is a favorable lipoprotein sub-class for the body whereas LDL is not. Therefore, significant increase in HDL and decrease in LDL in this study appear advantageous to the body which consequently alter the risk of coronary heart disease due to one of HDL functions is to eliminate LDL from the blood vessels.

The results of this study also showed that trained individuals in endurance exercise intensity or during measurement of their maximum aerobic capacity will have higher fat oxidation. The increase in fat oxidation induced by exercise is (mainly) due to increased fatty acid oxidation. Fat oxidation is lower in high-intensity exercise compared to moderate-intensity. This is partly due to the decreasing fatty acid transfer to the working muscles.

Despite no significant decrease in the triglyceride variable, the measurement was statistically differ (Tables 1 and 2), such as the lower mean value of triglyceride final test results (after treatment). Other studies showed a decrease in blood triglyceride level. Harry H. Yu, Geoffrey S. Ginsburg, Mary L. O’Toole, James D. Otvos, Pamela S. Douglas, Nader Rifai (1999), shown that the decrease was quite obvious due to increasing fatty acid metabolism related to the duration of exercise or race. Thus, aerobic activity in those studies was positively correlated with the duration of exercise. This study shows a decrease in mean value and statistically insignificant, indicates that duration of exercise (on aerobic capacity measurement) is not acutely affected the triglyceride level. If the objective is the decrease in blood triglyceride level, the bleep test (to measure VO$_{2\max}$) may not correlate with the expected decrease. This requires
further study, because it has been known that base level of triglyceride serum found to be lower in endurance athletes.

CONCLUSION

Based on data analysis and discussion in this study, the conclusion is drawn as follows: Blood cholesterol profile after the measurement of maximum oxygen capacity (VO₂max) has better value than before.

REFERENCE

