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Abstract 

 

There is a gap between existing climate information and the needs of annual dam operational 

planning. This study aims to demonstrate that the percentile approach currently used for 

planning is not optimal, especially now that automation has become more accessible. The 

purpose of this study is to design an automated forecasting and evaluation system based on 36 

10-days rainfall projections using a multi-model approach. This approach comprises a 

percentile, ARIMA, ECMWF+ARIMA, IOD DMI regression, ERSST regression, and 

ensemble methods models. Additionally, this study aims to demonstrate how a verified, multi-

model-based rainfall forecast can provide more reliable assurance for the annual operational 

planning of Lahor-SutamiDam, simulated operationally in November 2022 for the 2022/2023 

planning cycle. Data utilized include historical 10-days rainfall data from 1991 to 2023, 

ECMWF raw and corrected model outputs, Nino-Dipole index, and global sea surface 

temperature. The verification method employs four criteria based on MAE and fit index. An 

operational simulation approach is used for training-testing period segmentation, while a 10-

year window is applied to account for possible climate-change-induced shifts in relationships. 

Single linear regression is used to avoid overfitting. The automation system was developed 

using R-Statistics. Results indicate that the current approach is only optimal for 58% of 

locations. Superior methods identified include ECMWFcorrected, ERSST regression, and 

Ensemble models. A case study for 2022/2023 demonstrates that the forecast results outperform 

the existing plan for at least 78% of the projected periods. 
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INTRODUCTION 

 

As the central institution providing 

meteorological, climatological, and 

geophysical information in Indonesia 

(BMKG, 2019), the Agency of 

Meteorology, Climatology, and Geophysics 

(BMKG) produces seasonal forecasts used 

in dam operational planning. Knowledge of 

the rainy and dry seasons allows dam 

managers to anticipate fluctuations in water 

supply (Hurkmans et al., 2023). BMKG's 

information includes forecasts of season’s 

start, characteristics, rainfall, and duration, 

which are determined using rainfall data 

and specific rainfall limits to distinguish 
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between the two seasons, with a threshold 

of 50 mm per 10-days for at least three 

consecutive 10-days. 

Referring to the Area Annual Water 

Allocation Plan (RAAT WS) for the 

Brantas River Basin in the 2023/2024 

period (Bestari, 2023), there are several 

gaps between the seasonal forecast 

information provided by BMKG and the 

practical dam operational needs. BMKG's 

seasons period vary each year, depending 

on the development of dynamic 

atmospheric conditions, while the single-

year operational plan of dam has a fixed 

period and uses specific thresholds based on 

35th and 65th percentiles, produced every 

November for the following year. This 

discrepancy highlights an opportunity to 

study forecast quality in the context of 

required operational scenarios, a topic not 

previously addressed. 

Currently, seasonal forecast 

information produced by BMKG, 

especially the dry-normal-wet 

classification, is used as the input for single-

year operational plan (RTOW) of dam 

(Bestari, 2023). Previous analyses found a 

high correlation, reaching 0.9, between 

basic rainfall data and the dam's inflow in 

the river basin filling the Lahor-Sutami 

dam. This correlation indicates the potential 

to use basic rainfall forecasts as a more 

precise and relevant input in dam 

operational planning. Recognizing the 

importance of forecast accuracy, this study 

explores the use of basic rainfall forecasts 

as a more suitable alternative to seasonal 

characteristics currently used in dam 

operations. 

Various models used for rainfall 

forecasting include ARIMA, ECMWF, and 

regression models. ARIMA has an average 

verification rate of 60% when used for 

monthly rainfall forecasts in East Java 

(Kurniawan et al., 2022). The ECMWF 

model has a lower error rate and higher 

correlation coefficient compared to the 

HyBMG univariate model, especially under 

extreme rainfall conditions in Kebumen 

(Ruslana et al., 2021). Rainfall forecasts in 

Indonesia also consider dynamic 

atmospheric conditions on regional, local, 

and global scales (Abdullah, 2021). For 

instance, ENSO activity, observed through 

the ONI index, shows a strong positive 

correlation with rainfall in Central Java. 

Besides ENSO, sea surface temperatures 

influence rainfall with varying correlations 

across regions, while variables like SOI, 

SST, ENSO, and IOD also affect rainfall in 

places like Pekanbaru. Each of these 

variables has a unique influence across 

different regions, indicating the potential 

for using a multi-variable approach in 

rainfall prediction (Ardhitama and 

Sholihah, 2013). 

The BMKG Research and 

Development Center has created Hybrid 

BMG (HyBMG), a statistical prediction 

model based on climate forecasts as a 

preventive measure to reduce the impact of 

hydrometeorological disasters such as 

drought and high rainfall. HyBMG is the 

result of climate modeling which is 

expected to be effective for areas with 

monsoon rainfall patterns, including East 

Java. Rainfall forecasting in HyBMG uses 

the ARIMA, ANFIS (Adaptive Neuro 

Fuzzy Inference System), wavelet-ARIMA, 

and wavelet-ANFIS methods. Research 

conducted by (Kurniawan et al., 2022) 

evaluated the extent to which the HyBMG 

prediction model can provide accurate 

monthly rainfall forecasts for the East Java 

region, with a focus on verification based on 

the percentage of accuracy in categorizing 

rainfall according to the SNI 8196:2015 

standard.  The model output is analyzed in 

the context of Neutral, El Niño and La Niña 

conditions using the Nino 3.4 index 

(Oceanic Nino Index/ONI) to determine 

ENSO conditions. The ARIMA method has 

the highest verification rate among other 

models, namely 60% on average. In 

general, the HyBMG model output has 

verification below 60% during the La Niña 

phase, while in the El Niño phase only 

ARIMA reaches a verification level of 

between 60% and 70%. Meanwhile, the 

results of research conducted by Noviasari 
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et al. (2023) shows that the AR1 model is 

able to produce rainfall forecasts with 

similar patterns to observational data in 

Madura, East Java. 

Another model used by BMKG is 

ECMWF with the latest version ECS4 

(ECMWF System-4), is a refinement of the 

previous model, namely System-3, with the 

difference being the use of the ocean model 

from the Nucleus for European Modeling of 

the Ocean and the NEMO/NEMOVAR data 

assimilation system. In addition, this model 

utilizes ERA-Interim re-analysis as initial 

conditions for the atmosphere and uses the 

latest integrated forecasting system cycle. 

All of this combined improves the 

capabilities of ECS4 over previous versions 

in several aspects, including horizontal, 

vertical resolution, number of ensemble 

members, and prediction range. Previous 

research by Weisheimer and Palmer (2014) 

showed that ECS4 has probabilistic 

prediction capabilities for seasonal rainfall 

that vary depending on the region and 

season period considered. They concluded 

that these predictions have a level of 

reliability that is still very useful in tropical 

regions during the Winter and Summer 

periods. A study on how reliable ECMWF 

is in forecasting basic rainfall in extreme 

conditions, especially during flood events 

in Kebumen, was carried out by Ruslana et 

al. (2021). The sensitivity of the HyBMG 

and ECMWF univariate models was tested 

through visual methods of spatial fit, simple 

correlation, and RMSE to compare their 

performance. One of the results obtained 

shows that the ECMWF raw output 

provides the best results compared to other 

models. ECMWF is a dynamic model that 

has a major role in producing summaries 

and explanations for basic and monthly 

operational forecasts. This is because this 

model takes into account dynamic factors 

from atmospheric circulation and sea 

surface temperature, including climate 

variability such as La Nina and El Nino. 

The analysis was carried out based on ZOM 

areas involving a sample of 1 rain post in 

each ZOM. The forecast results are 

evaluated with RMSE and correlation 

coefficient which shows that ECMWF is the 

best in terms of small RMSE among other 

models. 

Rainfall in East Java is also 

influenced by ENSO activity, dipole mode 

and sea surface temperature (Deman et al., 

2022). Regression analysis allows 

identifying the relationship between two 

variables (Maulita and Nurdin, 2023). 

Previous study conducted by Ardhitama 

and Sholihah (2013) attempted to improve 

the quality of weather forecast results in 

Pekanbaru by involving a simulation of 

forecasting the amount of rainfall in 

Pekanbaru City for 2011 and 2012 using 

input predictors such as SOI, SST, Nino 3.4, 

and IOD. The method used is multiple 

linear regression. Evaluation of rainfall 

forecast results is carried out using Root 

Mean Square Error (RMSE) and Standard 

Deviation (SD). The main objective of this 

study is to identify the most significant 

predictor factors influencing rainfall 

conditions in Pekanbaru. The research 

results show that weather conditions, 

especially rainfall in Pekanbaru, are 

influenced by global, regional and local 

factors. It was found that SOI predictors 

have a relationship with rainfall that has a 

high level of correlation. This shows that 

the multiple linear regression method can be 

an option to determine the influence of 

several variables on rainfall in Pekanbaru. 

Study conducted by Stockdale et al. (2010) 

revealed that seasonal predictions depend 

on changes in weather probability, 

especially related to slow changes such as 

sea surface temperature anomalies from El 

Niño-Southern Oscillation (ENSO). 

However, seasonal weather is also 

influenced by many other factors and 

internal variations in the atmosphere, so 

comprehensive models are needed to 

identify what can be predicted. 

In ongoing operational activities, 

BMKG forecasts use several existing model 

options such as ARIMA, ECMWF, and 

atmospheric index regression. In reality, 

there is no one model that consistently 
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provides the best results in all regions of 

Indonesia, so adjustments for which model 

is the best one in each place are left to 

forecasters in related regions. Rather than 

forming a new model, the ensemble method 

allows the use of existing models to 

optimize existing forecasts. 

Ensemble techniques allow the 

combination of multiple models with 

different performances to produce more 

accurate forecasts (Weyn et al., 2021; 

Specq et al., 2020; Pakdaman et al., 2022). 

Studies have shown that using ensembles 

improves forecast quality (Gu et al., 2022; 

Kullahci and Altunkaynak, 2023; Kundu et 

al., 2023; Anggraeni et al., 2018), with the 

performance of each modelinfluencing its 

contribution to the ensemble. Assigning 

variable weightsyields better results rather 

than uniform ones, as each model has 

unique qualities (Wei et al., 2022). The 

inherent uncertainty in General Circulation 

Models (GCMs) affects the accuracy of 

projections, and multi-model ensemble 

approaches offer promising, replicable 

results in reducing projection uncertainty 

(Raju and Kumar,  2020). The use of 

ensemble techniques aims to improve 

accuracy and minimize discrepancies in 

forecast values. This research will 

contribute to establishing standards and 

criteria for more accurate and reliable 

seasonal forecasts, applicable to practical 

needs like dam operation planning and 

water resource management. 

Previous research revealed that 

rainfall is an important process that 

influences the water cycle (Chowdary and 

Anbarasi, 2020; Zhai et al., 2022), so it is 

necessary to predict rainfall patterns to 

anticipate floods. This research was carried 

out using an ensemble stacking technique 

involving the basic models of Naive Bayes, 

Decision Tree, KNN, and SVM. 

Meanwhile, the ensemble was built using 

the Deep Neural Network method. The 

results of this study show a better level of 

accuracy and specificity in the ensemble 

results, namely 80% and 97%. 

Important point found by Raju and 

Kumar (2020) that selection of an 

appropriate Global Climate Model (GCM) 

needs to be carried out in impact studies. 

Performance measurements and appropriate 

decision-making techniques play an 

important role in the ensemble that will be 

built. Uncertainty in GCMs affects 

projection accuracy. The multi-model 

ensemble approach provides promising and 

replicable results in reducing uncertainty in 

projections. 

According to Wei et al. (2022), there 

are some effects of adding a low-

performance model on forecast accuracy 

with an ensemble model. Different 

weighting techniques showed a completely 

different result on the ensemble forecast. 

The ensemble is formed using linear 

regression with the weights between models 

being the same and varying which are 

assumed to be inversely proportional to the 

error variance (MAE). The results of this 

study show that ensemble forecasts with 

varying weights are better than equal 

weights. It is happens not only for rainfall 

prediction, but also temperature prediction 

with various variations in time lag also 

shows a similar thing where the use of 

varying weights is better. The varying 

weight method can overcome the problem 

of decreasing accuracy due to adding 

models with low performance (Jose et al., 

2022). 

A monthly rainfall forecast model 

was built by Gu et al. (2022) using an 

ensemble technique to combine several 

basic models which each have their own 

advantages. This research was conducted in 

the Taihu Watershed, China. The basic 

models used are k-nearest neighbors 

(KNN), extreme gradient boosting (XGB), 

support vector regression (SVR), and 

artificial neural networks (ANN). The 

ensemble is built using the weighting of 

each basic model. The ensemble monthly 

rainfall forecast produces the lowest MAE 

41.65, indicating that the presence of the 

ensemble improves forecast performance 

compared to the output of the basic model. 

More specifically, precipitation forecasts 
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using stacking ensembles are better in 

spring and winter than in summer and 

autumn. 

Fathi et al. (2019) combined 9 daily 

rainfall forecast models in Iran to build an 

ensemble model based on average and 

weighted average. The weight of each 

ensemble member is determined from 

previous performance in the training period. 

The performance of the baseline and 

ensemble models is compared using RMSE 

and ACC. This research shows that the 

ensemble process is effective in improving 

forecast quality where the best results are 

shown by the ensemble weighted average 

(ENSWM) with RMSE 2.8-3.3. 

Not just forming an ensemble, this 

forecast is adjusted to resemble the scenario 

used in dam operational planning so that the 

results of this research are more applicable. 

This adjustment is intended to overcome 

existing gaps. The scenario in question is a 

forecast covering the next year starting from 

December to November according to the 

schedule for holding annual planning 

meetings. So far, dam planning usually uses 

forecast information about seasonal 

characteristics. In the latest data processing 

that compares dam inflow discharge with 

basic rainfall, it is known that the two have 

a quite promising correlation. Instead of 

continuing to use seasonal properties, this 

research offers baseline rainfall forecasts as 

a more relevant option for input in dam 

operational planning.  

Creating seasonal forecasts for East 

Java using large volumes of historical data 

requires efficient approaches, such as 

automation with open-source software. 

Automation involves algorithms and big 

data techniques to uncover patterns within 

complex datasets, enabling faster periodic 

forecast updates and adaptive responses to 

changing weather conditions. In line with 

recent standards, BMKG now recommends 

open-source software for seasonal 

forecasting due to its sustainability and 

accessibility. In this context, R-Statistics, 

with R-Clim features, emerges as a practical 

option. 

Based on the above, this research 

focuses on optimizing seasonal forecasts 

within the RTOW framework by 

implementing ensemble techniques to 

improve forecast relevance for dam 

operations. This study designs an 

automated 36 10-days rainfall prediction 

system using a multi-model approach, 

including percentile, ARIMA, 

ECMWF+ARIMA, IOD DMI regression, 

ERSST regression, and ensemble models. 

Additionally, it aims to demonstrate how a 

verified multi-model forecast approach can 

provide more reliable certainty for the 

annual operational plan of the Lahor-

Sutami dam, simulated for the 2022/2023 

planning period. 

 

MATERIALS AND METHODS 

 

The material used in this study is 

rainfall data based on seasonal zones, 

abbreviated as ZOM. Out of the 74 ZOM in 

East Java, 12 ZOM intersect with the area 

that fills the Lahor-Sutamidam. The 

analysis used to identify the intersecting 

ZOM was conducted using the zonal 

statistics feature from the raster package in 

R-Statistics. First, the area that serves as the 

dam catchment is converted into a binary 

raster, where 1 represents the catchment 

area and 0 represents areas outside the 

catchment. This raster is then aligned in 

resolution and extent with the existing ZOM 

raster. The analysis resulted in identifying 

12 ZOM that cover the dam catchment, with 

ZOM 36 [36.40%], 40 [29.68%], 34 

[9.67%], 37 [8.48%], 33 [6.83%], 20 

[6.10%], and the remaining 6 ZOMs [30-

31-35-38-39-41] each contributing less than 

1%. A visual representation of the overlap 

between the dam catchment area and ZOM 

in East Java can be seen in Figure1 below. 
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Figure 1. Dam Catchment Area (Green) 

with ZOM in East Java (orange) 

Source: East Java Climatological Station 

2024 

 

The time dimension of rainfall used in 

this study is 10-days, spanning from the first 

10-days of 1991 to the 36th 10-days of 

2023, which is equivalent to 1188 10-days 

periods or 33 years. The rainfall data used 

is blended rainfall data, which combines 

ground-based rain gauge measurements and 

satellite-based rainfall estimates. This data 

is operationally used by official government 

agencies in Indonesia for seasonal 

monitoring and forecasting. The rainfall 

predictor data used consists of both raw and 

corrected ECMWF outputs, which are 

available operationally on the 8th of each 

month. Rainfall and its predictions are 

commonly known for having a connection 

with sea surface temperature (Mahera et al., 

2023). Other predictor data used include the 

Oceanic Niño Index (ONI) from CPC 

NCEP NOAA, representing the Pacific 

Ocean index, and Dipole Mode Index 

(DMI) from PSL NOAA, representing the 

Indian Ocean index. Lastly, the Sea Surface 

Temperature Anomaly Index from ERSST 

NOAA IRIDL is also used, which will be 

processed using principal component 

analysis (PCA) as a representation of the 

long-range teleconnection, commonly 

recognized in climatology. All sea surface 

temperature indices are on a monthly 

timescale. 

This study uses an operational 

simulation approach, with the simulation 

years spanning from 2014 to 2022 (9 years). 

The year 2014 marks the first year that 

ECMWF was used as one of the prediction 

sources by government climate forecasters, 

while 2022 is the last year for which data 

was available at the time this research was 

conducted. This simulation approach means 

that the data is not split using the 80:20, 

70:30, or similar ratios for training and 

testing. The data cut is made based on the 

actual availability of data when an annual 

dam operational plan (RTOW) is created, 

which occurs every November. The 

assumption is the meeting for the 

operational plan is held in mid-November, 

so the rainfall data is available up to the 

33rd 10-days (end of October) of the current 

year. The ECMWF predictions for 

November through May of the following 

year are available, and the ocean-related 

indices are available up to the anomaly 

analysis of September or JAS (July-August-

September) for the Oceanic Niño Index 

(ONI), which is typically delayed by two 

months. 

To evaluate the accuracy of a 

forecast, this study proposes the use of four 

criteria. The first criterion is the average fit 

index. This fit index is similar to the 

confusion matrix used in other studies, but 

the table employed uses the 10-day rainfall 

categories according to the official 

government rainfall product legend 

(Kurniawan et al., 2022), with a tolerance 

of one category to be considered a match. 

This method is used here and also 

represents the operational simulation 

concept. In addition to the average fit index, 

the absolute minimum value for each year 

is also usedas in operational settings, a 

model that experiences a decrease in fit 

index will attract considerable attention 

from forecasters. Besides the fit index, the 

Mean Absolute Error (MAE) also used, 

which represents a superior numerical 

approach due to its simplicity compared to 

Root Mean Square Error (RMSE) and also 

reflects a non-categorical approach 

(Willmott and Matsuura, 2005). 

To generate forecasts for the next 36 

10-days periods (from 10-days period 34 to 

10-days period 33 of the following year), 

several approaches are used as follows. The 
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first scenario, or percentile-based scenario, 

is currently used in operational status, 

utilizing the 35th percentile (dry), 50th 

percentile (normal), and 65th percentile 

(wet) to determine the planned discharge 

(Bestari, 2023). An alternative proposed in 

this study is the use of the ARIMA, 

ECMWF+ARIMA, ONI-IOD regression, 

ERSST Principal Component Regression, 

and MAE-and-fit index-based Ensemble. 

Since the rainfall pattern in East Java is 

monsoonal (Kartika et al., 2021), the 

difference from the moving average is 

updated annually for ARIMA, enabling it to 

directly generate predictions for the next 36 

10-days periods. However, this is not the 

case for ECMWF, which requires 

supplementation with ARIMA. The sea 

surface temperature-based regression uses a 

10-year moving window approach, which 

accommodates the potential impact of 

climate change on atmospheric-ocean 

parameter relationships. The regression 

used is simple linear regression to avoid 

overfitting due to the short window size. 

The teleconnection lag approach is 

represented using up to a 10-month lag. 

This means that a sea surface temperature 

index up to October of previous year is 

considered potential for use as a predictor 

for the 36 10-days period rainfall forecast, 

calculated from the end of October of the 

current year. 

All automation, including the 

generation of prediction values, 

verification, and plotting, is performed 

using R-Statistics software with the help of 

packages such as forecast, raster, and ncdf4, 

primarily for processing ARIMA with 

auto.arima (Hyndman and Khandakar, 

2008) and sea surface temperature data in 

net-CDF extension. The total number of 36 

10-days period predictions generated is 

450, consisting of 3 percentile-based 

scenarios, 1 ARIMA scenario (auto.arima), 

2 ECMWF (raw/corrected)+ARIMA 

scenarios, 24 ONI DMI regression 

scenarios, 120 principal component 

regression scenarios (10 components), 150 

MAE-based ensemble scenarios 

(Mahmudiah et al., 2019), and 150 fit 

index-based ensemble scenarios. The 

ensemble system is performed using a 

weighting approach (Fathi et al., 2019) 

where each weight divided by the total 

weight, as in previous studies, and the fit 

index value divided by the total weight. 

Once again, the weights will be adjusted 

annually following the operational 

simulation principle, so that the evaluation 

results (MAE and fit index) for 2014 will be 

used for the 2015 ensemble, the 2014-2015 

evaluation for the 2016 ensemble, and so 

on, until the 2014-2021 evaluation is used 

for the 2022 ensemble. 

 

 
Figure 2. Graph Format for Visualizing 

Model Output and Verification 

Results 

 

The multi-model approach, which 

provides multiple model outputs and 

verification results, is handled by proposing 

a standard presentation format as shown in 

the figure above. The green and black lines 

represent the addition of ensemble members 

(from 1 to 150, black and green), while the 

red line shows the verification of non-

ensemble outputs. A challenge that arises is 

the large number of red lines, which can 

become overwhelming, so the solution is to 

group the plots into 5 categories (percentile, 

ARIMA, ECMWF(+ARIMA), IOD 

ONII/R-IODONI regression, and 

ERSST/R-ERSST principal component 

regression). The proposed scheme is as 

shown in the figure below. The Y-axis 

represents the average or minimum fitness 

index. In other plots, the Y-axis also shows 
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MAE-based Fit.Index-based

PERCENTILE/ ARIMA / ECMWF / 

R-IODONI / R-ERSST
F

it
. 

In
d

e
x-

a
v

g
 /

 m
in

 O
R

R
e

v
e

rs
e

d
 M

A
E

-a
vg

 /
 m

a
x



Automated Multi-Model Prediction and Evaluation for Connecting Rainfall Prediction Information and 
Single-Year Operational Plan of Lahor-Sutami Dam (Rikha R. Mahmudiah et al.,) 

440 

the average and maximum MAE. Since a 

model is considered better if it has a high 

fitness index and low MAE, a reversed Y-

axis is used for plotting so that forecasters 

can interpret the results more uniformly, 

with higher lines indicating better 

verification of the model output. This plot is 

expected to provide an intuitive overview to 

forecasters regarding the impact of 

increasing ensemble members on the 

verification results, while also offering a 

comparison of verifications across the 

different methods. 

 

 
Figure 3. Overview of Each Model’s Output in Specific Seasonal Zone (ZOM) 

 

To simplify the summarization of 

model outputs, a table containing scenarios 

that perform best according to one of the 

four criteria (highest average fitness index, 

highest minimum fitness index, lowest 

average MAE, OR lowest maximum MAE) 

is automatically generated to assist 

forecasters. This result table is also 

simulated operationally for the 2022/2023 

single-year dam operational plan. The 

2022/2023 data used includes both planned 

inflows and actual observed inflows. Using 

this data, the study will demonstrate the 

potential use of the 36 10-days-ahead 

rainfall forecasts in the single-yeardam 

operational plan. The rainfall forecast 

results, based on the recommendation table 

generated from the automated system, are 

considered to be handed over to the 

forecaster. In this case, the forecaster is 

represented by a random selection process 

acting as a blind forecaster. This random 

selection process is repeated through 

bootstrapping 10,000 times, and the median 

is then calculated to represent the final 

result. The forecast results are then 

compared with the observed rainfall by 

constructing an empirical equation based on 

wet and dry periods. The rainfall data is 

converted into discharge values, enabling a 

direct comparison with the existing 

discharge plan. The prediction output is 

then compared by calculating the absolute 

difference for each 10-day period with the 

existing plan. It is important to emphasize 

that using the operational simulation 

approach means the rainfall prediction 

results obtained will be identical to the 
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results that would have been produced in 

November 2022. 

 

RESULTS AND DISCUSSION 

 

This study automates various steps in 

generating 36 10-days-ahead predictions 

using a multi-model approach and 

verification. For quality control, each 

prediction output and observation are 

visualized in graphs like the one below, 

allowing forecasters to assess the alignment 

of each model and directly observe the 

results. This plotting process is automated. 

In this study, as many as 5,400 images like 

the one below are automatically generated. 

The results, in the form of forecast values 

based on operational simulations, are also 

saved in CSV file tables. 

 

 
Figure 4.  Time Series of Model’s Prediction (Red Line) vs Observation (Black Line) for Each 

ZOM 

 

The forecast results are then verified 

for each ZOM, producing the suitability 

index values and MAE for each year from 

2014 to 2022 (9 years). From these values, 

the average suitability index, minimum 

suitability index, average MAE, and 

maximum MAE are calculated and 

automatically generated. These four criteria 

are then plotted, as shown in the example 

image below. The example below 

represents ZOM=36, where it can be seen 

that the ECMWF method (middle box, 

column 3) excels in the fit index average 

and MAE average. Meanwhile, when 

looking at the highest fit index minimum, 

the regression method based on DMI 

outperforms, and when examining the MAE 

average, the ensemble method is identified 

as the one most effective in minimizing the 

maximum MAE. 

 

Based on the data in Figure 5, the 

system will automatically generate a 

recommendation table that can be provided 

to the forecaster. It is common practice in 

climate operations that the final 

determination of a climate model is left to 

the forecaster, as climate information 

sometimes has socio-economic 

implications. Therefore, questions such as 

which of the four criteria above is more 

important become less relevant. It is a 

consensus that the role of automation 

should be limited to providing 

recommendations to the forecaster. It is also 

less relevant to inquire about the fit index or 

MAE of each forecast model. The purpose 

of this automation process is to identify the 

most appropriate model for each ZOM, 

rather than using a single model that is 

considered to represent the majority at the 

expense of specific ZOM interests.
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Figure 5.  Overview of Each Model’s Output (Left to Right: Percentile Based, ARIMA, 

ECMWF-ARIMA, ONI-DMI Regression, ERSST Regression) for ZOM=36 

Table 1. Example of Best Model Recommendation and its Verification Results for ZOM=36 

RECOMMENDATION 

ZOM=36 

F.Index 

AVG 

F.Index 

MIN 

MAE 

AVG 

MAE 

MAX 

Ens_F.Index-based, M=4 66 56 35.5 39.1 

R_DMI_Aug 68 61 34.9 42.2 

ECMWF_cor+ARIMA 69 58 31.7 42.4 

 

The use of the four criteria can also be 

justified by looking at the figure below, 

which shows that the approach using the 

minimum Fit Index provides an overview of 

models that have a lower range of 

prediction failure each year. The figure 

below is a plot of the fit index for each year 

from ZOM 40. The blue line represents the 

fit index values for each year. It can be seen 

that this approach ensures the fit index 

value does not drop below 60%. On the 

other hand, the approach using the 

maximum MAE (represented by the orange 

line) shows that this approach consistently 

results in forecasts with an MAE that does 

not exceed 40 mm. This is important 

because, in essence, even though a model 

may have a good average fit index or 

average MAE, any drop in performance at 

certain times may be a noteworthy issue. In 

the case of ZOM=40, the drop in 

performance that occurred in 2022 can be 

partly explained by the triple-dip La Niña 

phenomenon. It turns out that the ERSST 

regression method, which relies on ocean-

atmosphere teleconnections, and the 

Ensemble method were able to produce 

more reliable forecasts than ECMWF. 
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Forecasts for ZOM=40 

 

The table below shows that the 

percentile-based prediction approach is not 

optimal. Although this approach was the 

best based on the four criteria in 7 ZOM 

(58%), it was not optimal for predicting 

rainfall in 3 ZOM with the highest 

proportion of the dam inflow area (34, 36, 

and 40). The three methods that can be 

considered most optimal for forecasting 

rainfall over the next 36 10-days are Reg-

ERSST (11 ZOM), ECMWF (10 ZOM), 

and Ensemble (9 ZOM). Regarding the 

three ZOM with the highest proportions, the 

ECMWF method was the most reliable, 

followed by Ensemble and Reg-ERSST. 

The table below also indicates that the 

information from the analysis, or the data 

available at the time of preparation (rather 

than the forecast itself), from ONI and DMI 

is not crucial for predicting rainfall over the 

next 36 10-days. Rather, the SST 

teleconnection pattern needs further 

investigation related to long-term 

predictions. The next question is which 

ECMWF model is more optimal to use. 

Based on the evaluation of the four criteria, 

the ECMWF corrected approach was only 

suboptimal for ZOM=35, while ECMWF 

raw was optimal only for ZOM=20. This 

further emphasizes the importance of model 

correction, as supported by previous 

studies. 

 

 

 

 

 

 

 

 
Figure 6. Verification Results for Fit-Based (Above) and MAE-Based (Bottom) Ensemble
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Table 2. Summary of Forecast Verification at Each ZOM 

ZOM PERCENTILE ARIMA ECMWF 
Reg. ONI-

DMI 

Reg. 

ERSST 
ENS 

20 1 1 1 0 1 1 

30 1 0 1 1 1 1 

31 1 0 1 0 1 1 

33 1 0 1 0 1 1 

34 0 0 1 0 1 0 

35 1 0 0 1 1 1 

36 0 0 1 1 0 1 

37 0 0 1 0 1 0 

38 0 0 1 0 1 0 

39 1 1 1 1 1 1 

40 0 1 1 0 1 1 

41 1 0 0 0 1 1 

TOTAL 7 3 10 4 11 9 

% 58% 25% 83% 33% 92% 75% 

To demonstrate how 36 10-days 

optimized rainfall predictions can enhance 

the operational plan for the dam, a case 

study of the Sutami-Lahor Dam was 

conducted. The Sutami-LahorDam is 

assumed to receive no inflow from other 

dams, so the 36 10-days rainfall directly 

impacts the inflow discharge of the dam. 

The data used in the case study includes the 

Single-year Dam Operational Plan 

(RTOW) and its evaluation from the 

2022/2023 Annual Water Allocation Plan 

(RAAT). It is hoped that through this 

demonstration, stakeholders will be more 

motivated to collaborate on data sharing. 

The simulation for the preparation of the 

RTOW 2022/2023 was then carried out by 

calculating the median of randomly selected 

models considered optimal based on the 

four criteria (Fit Index AVG, Fit Index 

MIN, MAE AVG, and MAE MAX), with 

calculations repeated up to the 2021 limit to 

align with the operational simulation 

principle. 

 

Sutami-Lahor Dam 

 
The rainfall results for each ZOM are 

then multiplied by their respective weights 
and accumulated to form the Rainfall 
Prediction for 2022/2023 over 36 10-days. 
The multiplication of weights and rainfall 
values for each ZOM is also applied to the 

observation data, allowing for comparisons 
as shown in the figure above. It can be 
observed that the predicted and observed 
values follow an identical pattern. There are 
several spikes in the observed rainfall, 
expected caused by the influence of 
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Figure 7. Comparison of Prediction (Orange Line) and Observation (Blue Line) Rainfall in 
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Madden-Julian Oscillation on East Java 
rainfall. A noticeable difference appears to 
widen and remain constant from 21st 10-
days to 33rd 10-days. However, the next 

question that needs to be answered is 
whether this prediction is better compared 
to the existing plan that has already been 
implemented. 

 

 
In the RTOW, the required value is 

not rainfall but inflow discharge (Q inflow 
in cubic meters per second). In this study, 
an empirical regression formula is used to 
convert rainfall in millimeters per 10-days 
to inflow discharge in cubic meters per 
second. Since the RTOW separates the 
rainy period (December-May) and the dry 
period (June-November), the empirical 
formula is also divided accordingly. Due to 
limited information, the data used comes 
from the rainfall and discharge records in 
the RAAT 2022/2023. The empirical 
regression used in this study is shown in the 

figure above. It can be seen that the 
relationship between rainfall per 10-days 
and inflow during the wet period differs 
from the dry period. The two linear 
regression constants indicate that in wet 
conditions, even without rain, the inflow 
discharge is about 116 cubic meters per 
second, which is much higher than the dry 
period, where the inflow is around 57 cubic 
meters per second. This study also 
encourages further research on the 
relationship between rainfall and inflow 
using longer datasets and more 
comprehensive interpolation methods. 
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Figure 8. Rainfall-Inflow Relation in Sutami-Lahor Dam 

 
Figure 9. Inflow Comparison (Above) and Absolute Difference of Inflow (Bottom) in 

Sutami-Lahor Dam 2022/2023 
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The predicted rainfall, which has been 

converted into discharge, is then compared 

with the existing plan. It can be observed 

that the RTOW for 2022/2023 would have 

a smaller absolute difference if the 

automatically verified multi-model 36 10-

days rainfall prediction is used. Out of the 

36 10-days for which the discharge is 

planned, the multi-model results are only 

worse in 8 of the 36 planning 10-days. One 

of these occurred in 15th 10-day, and the 

other seven occurred in 27th – 33rdat the 

end of the prediction period. This 

demonstrates the potential for more 

accurate planning when the optimized 36 

10-days rainfall prediction is used. 

 

CONCLUSIONS 

 

The first conclusion drawn from this 

study is that the status quo method, which 

links seasonal rainfall characteristics to 

determine streamflow conditions [3], 

proves to be no better than relying on a 

multi-model approach and direct rainfall 

predictions over 36 10-days. The first piece 

of evidence is that forecasts based on the 

35th, 50th, and 65th percentiles are not 

superior to the multi-model approach. 

These percentile-based forecasts only 

emerge as the best approach in a few 

seasonal zones. The output from the 

EMCWF model, combined with ARIMA 

and ensemble methods, shows more 

promising results in terms of fit criteria 

(average and minimum) and Mean Absolute 

Error (MAE, average and maximum). The 

second piece of evidence comes from direct 

simulations using random forecasters 

provided with model recommendations 

from evaluations, which show lower 

absolute deviations compared to the annual 

plans used in 2022/2023. The use of an 

operational simulation approach in this 

study strengthens the aforementioned 

evidence, as it accurately reflects real 

conditions and employs training-testing 

data segmentation consistent with the 

conditions in November each year 

(including 2022). Based on this evidence, it 

is recommended to shift from using 

seasonal rainfall characteristics to 

forecasting rainfall over 36 pentads to 

enhance the value of operational dam 

planning. Further research is necessary to 

establish a more empirical formula for the 

rainfall-streamflow relationship and to 

integrate dam planning with projected 

rainfall data (as opposed to predictions) 

under future climate scenarios. It is also 

suggested that similar studies be conducted 

for other dams. 

 

ACKNOWLEDGEMENTS 

 

We would like to thank the 

Coordination Team of Water Resources 

Management (TKPSDA) of Brantas for 

making the discussion on linking climate 

information with the single-year 

operational plan data for dam possible. This 

research was conducted as a result of the 

insightful discussions that took place in that 

forum. 

 

REFERENCES 

 

Abdullah, S. E. A. N. (2021). Analisis 

Hubungan Indeks Nino 3.4 dengan 

Curah Hujan di Jawa Tengah. Buletin 

Meteorologi, Klimatologi, dan 

Geofisika, 2 (5), 24-30. P-ISSN 2716-

0130. 

Anggraeni, D., Kurnia, I. F., & Hadi A. F. 

(2018). Ensemble averaging and 

stacking of ARIMA and GSTAR 

model for rainfall forecasting. IOP 

Conf. Series: Journal of Physics: 

Conf. Series. doi:10.1088/1742-

6596/1008/1/012019. 

Ardhitama, A. & Sholihah, R. (2013). 

Model Simulasi Prakiraan Curah 

Hujan Bulanan pada Wilayah Riau 

dengan Menggunakan Input Data 

SOI, SST, NINO 3.4, dan IOD. 

Jurnal Sains & Teknologi Modifikasi 

Cuaca, 14 (2), 95-104. 



EnviroScienteae Vol. 20 No. 4,  November 2024 

447 

Badan Meteorologi Klimatologi dan 

Geofisika. (2019). Peraturan Badan 

Meteorologi Klimatologi dan 

Geofisika Nomor 7 Tahun 2019 

tentang Penyediaan dan Penyebaran 

Prakiraan Musim. Jakarta. 

Bestari, A. (2023). Laporan Akhir: 

Penyusunan Alokasi Air WS Brantas. 

Surabaya: Balai Besar Wilayah 

Sungai Brantas. 

Chowdary, P.S.M. & M. Anbarasi. (2020). 

Enhanced Rainfall Predictions using 

Stacking Technique. Journal of 

Emerging Technologies and 

Innovative Research, 7(7). 

Deman, M. H., Koppa, A., Waegeman, W., 

MacLeod, D. A., Singer, M. B., & 

Miralles D. G. (2022). Seasonal 

prediction of Horn of Africa long 

rains using machine learning: The 

pitfalls of preselecting correlated 

predictors. Water, 4:1053020. doi: 

10.3389/frwa.2022.1053020. 

Fathi, M., Azadi, M., Kamali, G., & 

Meshkatee, H. (2019). Improving 

Precipitation Forecasts over Iran 

using A Weighted Average Ensemble 

Technique. J. Earth Syst. Sci., 128 

(133). doi: 10.1007/s12040-019-

1145-2. 

Gu, J., Liu, S., Zhou, Z., Chalow, S. R. & 

Zhuang, Q. (2022). A Stacking 

Ensemble Learning Model for 

Monthly Rainfall Prediction in the 

Taihu Basin, China. Water, 14. doi: 

10.3390/w14030492. 

Hyndman, R. J. & Khandakar, Y. (2008). 

Automatic time series forecasting: 

The forecast package for R. Journal 

of Statistical Software, 27(1), 1–22. 

Hurkmans, R. T. W., Hurk, B. V. D., 

Schmeits, M. S., Wetterhall, F. & 

Pechlivanidis, I. G. (2023). Seasonal 

Streamflow Forecasting for Fresh 

Water Reservoir Management in the 

Netherlands: An Assessment of 

Multiple Prediction Systems. Journal 

of Hydrometeorology, 24 (7): 1275–

1290. doi: 10.1175/JHM-D-22-

0107.1 

Jose, D. M, Vincent, A. M. & Dwarakish, 

G. S. (2022). Improving Multiple 

Model Ensemble Predictions of Daily 

Precipitation and Temperature 

through Machine Learning 

Techniques. Scientific Reports, 12: 

4678, 1-25. doi: 10.1038/s41598-022-

08786-w. 

Kartika, Q. A. Faqih, A., Santikayasa, I. P., 

& Setiyawan, A. M. (2021). Sea 

Surface Temperature Anomaly 

Characteristics Affecting Rainfall in 

Western Java, Indonesia. Agromet, 37 

(10), 54-65, doi: 

10.29244/j.agromet.37.1.54-65. 

Kullahci, A. G. K. & Altunkaynak, A. 

(2023). Integrating Wavelet 

Decomposition and Stacking 

Ensemble learning for Accurate Daily 

Rainfall Forecasting. 

Kundu, S., Biswass, S. K., Tripathi, D., 

Karmakar, R., Majumdar, S., & 

Mandal S. (2023). A review on 

rainfall forecasting using ensemble 

learning techniques. Advances in 

Electrical Engineering, Electronics 

and Energy, 6. doi: 

10.1016/j.prime.2023.100296.  

Kurniawan, A., Muzayanah, L. F., & 

Sudirman. (2022). Verifikasi Luaran 

HyBMG saat Kejadian El Niño & La 

Niña di Jawa Timur. Buletin GAW 

Bariri (BGB), 3(2), 8-15. doiI: 

10.31172/bgb.v3i2.69. P-ISSN: 

2721-7752 | E-ISSN: 2721-9704. 

Mahera, U., Ilhamsyah, Y., & Octavina, C. 

Pengaruh Suhu Muka Laut terhadap 

Awal Masuk Musim hujan di 

Wilayah Utara-Timur Aceh. Jurnal 



Automated Multi-Model Prediction and Evaluation for Connecting Rainfall Prediction Information and 

Single-Year Operational Plan of Lahor-Sutami Dam (Rikha R. Mahmudiah et al.,) 

448 

Lingkungan Almuslim, 2 (2), 035-

049. doi: 10.51179/jla.v2i2.2110 

Mahmudiah, R. R., Kurniawan, A. & 
Makmus, E. E. S. (2019). 
Determining best East Java monthly 
rainfall projection using spatial-based 
validation. IOP Conf. Ser.: Earth 
Environ. Sci., 303 012023. 

Maulita, M., & Nurdin. (2023). Pendekatan 
Data Mining untuk Analisis Curah 
Hujan Menggunakan Metode Regresi 
Linear Berganda (Studi Kasus: 
Kabupaten Aceh Utara). Jurnal 
Online Manajemen Informatika, 6 
(2), 99-106. ISSN 2684-7280. 

Noviasari, T., Nuzula, N. I., Efendy, M., 
Febrianto, A. A., & Darmadi, A. 
(2023). Peramalan Curah Hujan 
terhadap Produktivitas Garam di 
Gresik Putih Sumenep. Jurnal 
Kelautan Tropis, 26 (1): 9-18. doi: 
10.14710/jkt.v26i1.16139. 

Pakdaman, M., Babaeian, I., & Bouwer, L. 
M. (2022). Improved Monthly and 
Seasonal Multi-Model Ensemble 
Precipitation Forecasts in Southwest 
Asia Using Machine Learning 
Algorithms. Water, 14. doi: 
/10.3390/w14172632. 

Ruslana, Z. N., Tresnawati, R., Rosyidah, , 
Harmoko, I. W., & Siswanto. (2021). 
Reliabilitas Prediksi Curah Hujan 
Dasarian Pada Kejadian Curah Hujan 
Ekstrim Pemicu Banjir 26 Oktober 
2020 di Kebumen: Model Statistik 
(HyBMG) versus Model Dinamik 
(ECMWF). Jurnal Geosains dan 
Teknologi, 4(2). 

Raju, K. S. & Kumar, D. N. (2020). Review 
of Approaches for Selection and 
Ensembling of GCMs. Journal of 
Water and Climate Change, 11, 577-
599. doi: 10.2166/wcc.2020.128. 

Specq, D., Batte, L., Deque, M., & 

Ardilouze, C. (2020). Multimodel 

Forecasting of Precipitation at 

Subseasonal Timescales Over the 

Southwest Tropical Pacific. Earth 

and Space Science, 7(9). doi: 

10.1029/2019EA001003. 

Tuysuzoglu, G., Birant, U. K., & Birant, D. 

(2023). Rainfall Prediction Using an 

Ensemble Machine Learning Model 

Based on K-Stars. Sustainability, 15, 

doi: 10.3390/su15075889. 

Wei, X., Sun, X., Sun, J., Yin, J., Sun J. & 

Liu, C. (2022). A Comparative Study 

of Multi-Model Ensemble 

Forecasting Accuracy between Equal 

and Variant Weight Techniques. 

Atmosphere, 13(4). doi: 1-

.3390/atmos13040526. 

Weisheimer, A. & Palmer, T. (2014). On 

the Reliability of Seasonal Climate 

Forecast. Journal of the Royal Society 

Interface, 11 (96). doi: 

10.1098/rsif.2013.162. 

Weyn, J. A., Durran, D. R., Caruanam Rm 

& Cresswell-Clay, N. (2021). Sub-

Seasonal Forecasting with a Large 

Ensemble of Deep-Learning Weather 

Prediction Models. Journal of 

Advances in Modeling Earth Systems, 

13. doi: 10.1029/2021MS002502 

Willmot, C. & Matsuura. (2005). 

Advantages of the Mean Absolute 

Error (MAE) over the Root Mean 

Square Error (RMSE) in assessing 

average model performance. Clim. 

Res., 30: 79-82. 

Zhai, A., Fan, G., Ding, X., & Huang G. 

(2022). Regression Tree Ensemble 

Rainfall–Runoff Forecasting Model 

and Its Application to Xiangxi River, 

China. Water, 14. doi: 

10.3390/w14030463. 

 

 

 


