POTENSI TUMBUHAN PIONIR UNTUK WOOD PELLET SEBAGAI BIOENERGI TERBARUKAN
Abstract
The increasing demand for energy in Indonesia is due to the need or the number of Indonesian population which has increased and is inversely proportional to the availability and production of existing energy. One of the best solutions that can be done is to promote the use of pioneer wood (fast growing plant) as an energy source by processing wood into wood pellets. The method used is a survey method by looking for a place to grow several types of pioneer plants. The purpose of this study was to determine the quality of wood pellets and the potential of several types of pioneer plants tested as environmentally friendly, sustainable renewable bioenergy. The pioneers tested were Acacia mangium, Jatropha curcas, Macaranga tanarius, Swietenia mahagoni, Leucaena leucocephala, and Sesbania grandiflora. The quality of Wood Pellets from pioneer plants is seen from the density ranging from 0.433 gr / cm3 to 0.503 gr / cm3, moisture content of 5.55% - 12.4%, ash content of 1.95-6.2%, and the calorific value of powder from 3657.67% - 4178.18%. Of the several types of pioneer plants tested, the most potential was Leucaena leucocephala because it had met SNI 8021 - 2014 and had the highest calorific value as required.
Keywords
Full Text:
PDFReferences
Amirta, et al 2016c. Suitability and Availability Analysis of Tropical Forest Wood Species for Ethanol Production: A Case Study in East Kalimantan. Biodiversitas 17: 544-552.
ANSI/ASABE S593.1. 2011. Terminology and Definitions for Biomass Production, Harvesting and Collection, Storage, Processing, Conversion and Utilization. ASABE.
Bridgwater A. V. 2012. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy, vol. 38, pp. 68-94.
Castellano J. M., Gomez M., Fernandez M., Esteban L. S., Carrasco J. E.2015. Study on the effects of raw materials composition and pelletization conditions on the quality and properties of pellets obtained from different woody and non woody biomasses. Fuel, vol. 139, pp. 629-635.
Edward, Edmond dan Rasoel Hamidy. 2011. Komposisi dan Struktur Permudaan Pohon Pionir Berdasarkan Jenis Tanah di Kabupaten Siak. Vol. 5 No.2.Jurnal Ilmu Lingkungan.
Fatriani dkk, 2018. Kadar air, kerapatan, dan kadar abu wood pellet serbuk gergaji kayu galam (Melaleuca cajuputi roxb) dan kayu akasia (acacia mangium wild) [skripsi]. Banjarbaru (ID) : Universitas Lambung Mangkurat.
Garcia-Maraver A., Popov V., Zamorano M. 2011. A review of European standards for pellet quality. Renewable Energy, vol. 36, pp. 3537-3540.
Graham S., Eastwick C., Snape C., Quick W. 2017. Mechanical degradation of biomass wood pellets during long term stockpile storage. Fuel Processing Technology, vol. 160, pp. 143-151.
Karwandy, J.2007. Pellet production from sawmill residue: a Saskatchewan perspective. Forintek Canada Corp Report. No. 2006-29.
Liliana, W. 2010. Peningkatan kualitas biopelet bungkil jarak pagar sebagai bahan bakar melalui teknik karbonisasi. Tesis. Bogor, Institut Pertanian Bogor.
Nurwigha, R. 2012. “Pembuatan biopelet dari cangkang kelapa sawit dengan penambahan arang cangkang sawit dan serabut sawit sebagai bahan bakar alternatif terbarukan”(skripsi). Bogor, Institut Pertanian Bogor.
Obernberger I, Thek G. 2004. Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behaviour. Biomass Bioenergy. 27:653 669.doi:10.1016/j.biombioe.2003.07.006.
Oveisi, E.; Sokhansanj, S.; Lau, A.; Lim, C.J.; Bi, X.; Ebadian, M.; Preto, F.; Mui, C.; Gill, R. 2018. In-depot upgrading the quality of fuel chips for a commercial gasification plant. Biomass Bioenergy, 108, 138–145. [CrossRef].
Roberto, R., 2012. Studi Tanaman Pionir Pada Lahan Bekas Penambangan Emas Rakyat di Cagar Alam Mandor Kabupaten Landak, Skripsi Fakultas Kehutanan. UNTAN. Pontianak.
Samuelsson R., Larsson S. H., Thyrel M., Lestander, T. A. 2012. Moisture content and storage time influence the binding mechanisms in biofuel wood pellets. Applied Energy, vol. 99, pp. 109-115.
Saptoadi,H. 2006. The Best Biobriquette Dimension and its Particle Size. The 2nd Joint International Conference on “Sustainable Energy and Environment (SEE 2006)”. 2006 Nov 21-23, Bangkok (TH).
Soerawidjaja, T.H. 2010. Peran Bioenergi dan Arah-arah Utama LitBangRap-nya di Indonesia. Lokakarya Gasifikasi Biomassa, Kampus ITB, Bandung, 16-17 Desember 2010.
Standar Nasional Indonesia. 2014. “Pelet Kayu (SNI 06-3730-1995)”. Jakarta : Badan Standarisasi Nasional Indonesia
Tampubolon, A.P. 2008. Kajian Kebijakan Energi Biomassa Kayu Bakar (Study of Fuelwood Biomass Energy Policies). Jurnal Analisis Kebijakan Kehutanan Vol. 5 (1) : 29 – 37.
Tumuluru TS, Hess JR, Boardman RD, Wright CT and Westover TL.2012. Formulation, pretreatment, and densification options to improve biomass specifications for co-firing high percentages with coal. Ind Biotechnol 8(3):113–132.
Vladut V., Chitoiu M., Danciu A., Militaru M., Lehr C. 2010. The importance of humidity on agricultural and forestry biomass in the process of pellets and agri-pellets production. Bulletin USAMV Agriculture, vol. 67, no. 1, pp. 292-300.
Wang C, Zhang L, Liu J. 2013. Cost of non-renewable energy in production of wood pellets in China. Education press and Springer-Verlag Berlin Heidelberg. Doi 10.1007/s11707-013-0358-y.
Winata, A. 2013. “Karakteristik Biopelet Dari Campuran Serbuk Kayu Sengon Dengan Arang Sekam Padi Sebagai Bahan Bakar Alternatif Terbarukan”. (Skripsi). Bogor, Institut Pertanian Bogor.
DOI: http://dx.doi.org/10.20527/es.v18i2.14234
Article Metrics
Abstract view : 642 timesPDF - 710 times
Refbacks
- There are currently no refbacks.
EnviroScienteae is licensed under a Creative Commons Attribution 4.0 International License
ISSN : 2302-3708 (Online version)
Program Studi Pengelolaan Sumberdaya Alam dan Lingkungan
Program Pascasarjana Universitas Lambung Mangkurat
Kampus ULM Banjarbaru Gedung 1 Lantai II
Jalan Ahmad Yani Km 36 Banjarbaru Kode Pos 70714
Tel / fax : (0511) 4777055 / (0511) 4777055
email : [email protected]