AKURASI ESTIMASI PRODUKSI PADI DENGAN METODE NDVI BERDASARKAN SENTINEL-2 DI KABUPATEN TANAH LAUT KALIMANTAN SELATAN
Abstract
Remote sensing is a technology that is very useful in every step of the planning process and has been used in developed countries and several regions in developing countries. The aim of this research is to interpret rice production in Tanah Laut Regency using the NDVI method based on Sentinel-2 and determine the accuracy of rice production estimates in Tanah Laut Regency using the NDVI method based on Sentinel-2. Research methods include preparation, measurement principles, data collection, radiometric correction, geometric correction, creating a vegetation index, determining the best vegetation index, estimating rice production, accuracy testing, image analysis, and rice production potential. The result of this research is a rice production estimation model of y = 0.341 + 4.319 NDVI. The NDVI estimation results in Tanah Laut Regency range from 1.36 t ha-1 to 3.36 t ha-1 with an average production of 2.67 t ha-1. The results of the analysis show that there is no real difference at the 95% confidence level between the results of the NDVI estimation of rice production using Sentinel-2 imagery and the results of the field survey of rice production based on a coefficient of determination (R2) of 0.749 and a standard error (SE) of 0.29 t ha-1.
Keywords
Full Text:
PDFReferences
Ekadinata, A., Dewi, S., Hadi, D. P., Nugroho, D., & Johana, F. (2008). Sistem Informasi Geografis untuk Pengelolaan Bentang Lahan Berbasis Sumber Daya Alam. Bogor: World Agroforestry Centre.
Mufti, B. (2018). Citra Sentinel-2 untuk Identifikasi Fase Pertumbuhan Padi dengan Pendekatan Indeks Vegetasi di Kabupaten Cianjur. Institut Pertanian Bogor: IPB Repository.
Nirtanto, I. C., Prasetyo, Y., & Sasmito, B. (2022). Analisis Pemodelan Fase Tumbuh Padi Menggunakan Citra Synthetic Aperture Radar C-Band Sentinel-2. Jurnal Geodesi Undip, 11(2), 1-10.
Rumintjap, V. N. D., Rogi, J. F. X., & Tooy, D. (2018). Pemetaan Potensi Produksi Padi Sawah (Oryza Sativa L) dengan Menggunakan Model Simulasi Tanaman di Kabupaten Minahasa Selatan. Jurnal Agri Sosioekonomi. 12 (1), 53-64.
Siyal, A.A, J. Dempewolf, & I. B. Reshef. (2015). Rice Yield Estimation Using Landsat ETM+ Data. Journal of Applied Remote Sensing. 9(20), 1-16.
Wahyunto., Widagdo., & Heryanto, B. (2006). Pendugaan Produktivitas Tanaman Padi Sawah Melalui Analisis Citra Satelit. Informatika Pertanian, 15(1), 853-869.
DOI: http://dx.doi.org/10.20527/es.v20i1.18882
Article Metrics
Abstract view : 255 timesPDF - 238 times
Refbacks
- There are currently no refbacks.
EnviroScienteae is licensed under a Creative Commons Attribution 4.0 International License
ISSN : 2302-3708 (Online version)
Program Studi Pengelolaan Sumberdaya Alam dan Lingkungan
Program Pascasarjana Universitas Lambung Mangkurat
Kampus ULM Banjarbaru Gedung 1 Lantai II
Jalan Ahmad Yani Km 36 Banjarbaru Kode Pos 70714
Tel / fax : (0511) 4777055 / (0511) 4777055
email : psdal.unlam@gmail.com