ANALISIS PENGETAHUAN MITIGASI BANJIR PADA MASYARAKAT KABUPATEN BANJAR DENGAN PENDEKATAN METODE REGRESI LOGISTIK BINER
Abstract
The largest flood condition in South Kalimantan Province occurred in 2021. The worst flooded area is Banjar Regency with 27,249 fatalities. Floods also affected the agriculture and fisheries sectors, causing agricultural land productivity to decrease to 87,598 tons from 2021 to 2020. A total of 1,838 aquaculture businesses suffered losses of up to 70 billion rupiah. The causes of flooding do not only come from natural factors but can come from other factors such as a lack of knowledge of flood mitigation, resulting in huge losses for the community. Previous research states that the factors that influence flood disaster mitigation are the level of education and income. This study aims to determine the factors that influence flood mitigation knowledge in Banjar Regency communities using the binary logistic regression method. The results of the study provide differences from previous studies, namely the environmental factor with category 1, the implementation of environmental management by the community affects flood mitigation knowledge with a p value (0.027) < α (0.05) and a value of W (2.2198) > Z_table (1.960). The odds ratio value shows that the probability of the Banjar Regency community having flood mitigation knowledge is 2.79 times greater than other variable categories. The model explains an influence of 31.6% with an AIC value of 125. The respondents flood mitigation knowledge in managing the environment includes all types and stages of flood disaster mitigation related to local wisdom in the respondents location, namely several terms such as "Apar-Apar, Jukung Terpal, Galangan, Kelambu Kolam". There are still some things that need to be maximized for flood mitigation knowledge, namely the formation of disaster resilient villages in Martapura City, East and West Sub-districts. Dissemination of information on climate-smart agriculture training to farmers. Realization of temporary waste bin facilities in Banjar Regency.
Keywords
Full Text:
PDFReferences
BPBD Kabupaten Banjar. (2023). Peta Ancaman Banjir di Kabupaten Banjar. https://bpbd.banjarkab.go.id/petarawanbencana. Diakses 27 Agustus 2023.
Casella, G., & Berger, R. (2002). Statistical Inference (Second Edition). USA: Duxbury Thomson Learning.
Faruk, F. M., Faruk, F. M., Doven, F. S., & Budyanra, B. (2020). Penerapan Metode Regresi Logistik Biner Untuk Mengetahui Determinan Kesiapsiagaan Rumah Tangga Dalam Menghadapi Bencana Alam. Seminar Nasional Official Statistics,2019(1),379–389.
Hartini. (2018). Hubungan Tingkat Pendidikan dengan Pengetahuan Masyarakat Tentang Mitigasi Bencana Banjir di Kampung Salo Kecamatan Kendari. JPG, 3(2), 1–2.
Hastanti, B. (2020). Analysis of Vulnerability Levels to the Flash Flood Based on Social Economic and Institutional Factors in Wasior, Teluk Wondama, West Papua. Jurnal Wasian, 7(1), 25–38.
Hosmer, D., & Lemeshow, S. (2000). Applied Logistic Regression (Second Edition). New York: John Wiley & Sons, INC.
Ilmi, B. Y., Rachmawati, A. T., & Usman, F (2022). Penanganan banjir Pada Pemukiman Padat Penduduk Sepanjang Sub DAS Martapura Kabupaten Banjar Provinsi Kalimantan Selatan. Jurnal Geografi Lingkungan Lahan Basah, 3(22), 93–101.
Kumalawati, R., & Angriani, F (2018). Pemetaan Risiko Bencana Banjir di Kabupaten Hulu Sungai Tengah. Prosiding Seminar Nasional Geografi UMS.
Rizky Saputra. (2021). Diskan Banjar : 2.348 keramba Jaring Apung Hancur Dengan Kerugian Akibat Banjir. https://www.teras7.com/diskan-banjar-2-348-keramba-jaring-apung-hancur-dengan-kerugian-akibat-banjir/
Diakses 27 Agustus 2023.
Rahmayanti, A. Fauzi, M. T., & Muzdalifah (2022). Neraca Ketersediaan Beras Pasca Bencana Banjir Tahun 2021 di Kabupaten Banjar. Jurnal Tugas Akhir Mahasiswa, 6(22),1–8.
Umbu, R. Ndapamuri, U., & Jawang, U (2022). Evaluasi Status Kesuburan Tanah Pada Lahan pertanian Pasca Banjir di Desa Watupuda Kecamatan Umalutu. Jurnal Ilmu Pertanian. 6(2). 140-148.
Yang, Y., Chen, G., & Reniers, G. (2020). Vulnerability assessment of atmospheric storage tanks to floods based on logistic regression. Reliability Engineering and System Safety, 196.
DOI: http://dx.doi.org/10.20527/es.v20i1.18883
Article Metrics
Abstract view : 344 timesPDF - 211 times
Refbacks
- There are currently no refbacks.
EnviroScienteae is licensed under a Creative Commons Attribution 4.0 International License
ISSN : 2302-3708 (Online version)
Program Studi Pengelolaan Sumberdaya Alam dan Lingkungan
Program Pascasarjana Universitas Lambung Mangkurat
Kampus ULM Banjarbaru Gedung 1 Lantai II
Jalan Ahmad Yani Km 36 Banjarbaru Kode Pos 70714
Tel / fax : (0511) 4777055 / (0511) 4777055
email : [email protected]