UJI VALIDITAS IBFWS (IMPACT BASE FORECAST AND WARNING SERVICES) DALAM MEMPREDIKSIKAN WILAYAH YANG BERPOTENSI TERDAMPAK BANJIR DI KALIMANTAN SELATAN
Abstract
South Kalimantan is one of the provinces in Indonesia which has a high risk of flood disasters seen from its physical condition, which geographically is mostly located below sea level. In 2021, 11 out of a total of 13 districts and cities in South Kalimantan were affected by flooding on a large scale, which caused tens of thousands of residents to suffer losses and even lost family members. IBFWS (Impact Base Forecast and Warning Services) is present as the latest innovation from the Meteorology, Climatology and Geophysics Agency as an impact-based weather forecast information service. To determine the accuracy of the IBFWS service information, it is necessary to validate the prediction results issued by IBFWS with the actual situation. By using spatial analysis methods, it is hoped that it can describe which areas are potentially affected by flooding and continued with the calculation of the contingency table so that the accuracy value of IBFWS is obtained in predicting areas potentially affected by flooding in South Kalimantan. IBFWS validation results in predicting areas potentially affected by flooding in South Kalimantan during the rainy season range between 0.85 – 1.00 which mean 85% - 100% the IBFWS prediction results are correct, during the transition season in general is 0.77 which mean 77% the IBFWS prediction results are correct, and during the dry season it ranges between 0.92 – 1.00 which mean 92% - 100% the IBFWS prediction results are correct.
Keywords
Full Text:
PDFReferences
Alamsyah, A., Akhmad, B. A., Haitami, A. R., Hafizan, C. M. A., Katimenta, F. Y., Fitriani, J. Putri, L. N. A. (2022). Sosialisasi Tanggap Bencana Banjir Pada Masyarakat Lansia di Desa Lok Cantung, Kabupaten Banjar, Kalimantan Selatan. Journal of Empowerment and Community Service (JECSR), 2(02), 145–150.
Ali, A., Deranadyan, G., & Sa’adah, U. (2021). Kajian Awal Pemanfaatan Data Pengindraan Jauh Dalam Implementasi Peringatan Dini Cuaca Ekstrim Berbasis Dampak. Prosiding WIN-ID.
Ardhitama, A., & Sholihah, R. (2014). Kajian Penentuan Awal Musim di Daerah Non ZOM 14 Riau dengan Menggunakan Data Curah Hujan dan Hari Hujan. Jurnal Sains & Teknologi Modifikasi Cuaca, 15(2), 65–73. Childs, C. (2011). Interpolating Surfaces in ArcGIS Spatial Analyst. ducation,4.
Badan Meteorologi Klimatologi dan Geofisika. 2020. Prakiraan Musim Hujan 2020/2021 di Indonesia. BMKG. Jakarta
Bakornas. (2007). Pedoman Praktis Penanggulangan Bencana Banjir-Bakornas PB (Vol. 344, Issue 021).
Fadholi, A. (2013). Studi Dampak El Nino dan Indian Ocean Dipole (IOD) Terhadap Curah Hujan di Pangkalpinang. Jurnal Ilmu Lingkungan, 11(1), 43–50.
Haryani, N. S., Zubaidah, A., Dirgahayu, D., Yulianto, H. F., & Pasaribu, J. (2012). Model Bahaya Banjir Menggunakan Data Penginderaan Jauh Di Kabupaten Sampang (Flood Hazard Model Using Remote Sensing Data In Sampang District). Jurnal Penginderaan Jauh Dan Pengolahan Data Citra Digital, 9(1).
Hutabarat, Y. H. M. (2021). Pengembangan sistem informasi prakiraan cuaca berbasis dampak menggunakan model prakiraan cuaca numerik untuk wilayah Jakarta. Widya Climago, 2(2), 1-10.
Kodoatie, R. J., and Sugiyanto. BANJIR: Beberapa Penyebab dan Metode Pengendaliannya dalam Perspektif Lingkungan. Yogyakarta: Pustaka Pelajar, 2002, halaman 26
Nafarin, A., Adyatma, S., Arisanty, D., & Riadi,S.(2017). MODEL Pengelolaan Daera H Rawan Bencana Banjir Berbasis Masyarakat Di Kabupaten Hulusungai Tengah Provinsi Kalimantan Selatan.
Sebastian, Ligal. (2008). Pendekatan Pencegahan Dan Penanggulangan Banjir. Jurnal Teknik Sipil ,162-169.
Wahid, H. (2017). Analisis Karakteristik dan Klasifikasi Curah Hujan di Kabupaten Polewali Mandar. Jurnal Sainsmat, VI(1), 15–27.
Yamagata, T., Behera, S. K., Luo, J.-J., Masson, S., Jury, M. R., & Rao, S. A. (2013). Coupled Ocean-Atmosphere Variability in the Tropical Indian Ocean. Geophysical Monograph Series, 189–211
DOI: http://dx.doi.org/10.20527/es.v20i2.19381
Article Metrics
Abstract view : 234 timesPDF - 167 times
Refbacks
- There are currently no refbacks.
EnviroScienteae is licensed under a Creative Commons Attribution 4.0 International License
ISSN : 2302-3708 (Online version)
Program Studi Pengelolaan Sumberdaya Alam dan Lingkungan
Program Pascasarjana Universitas Lambung Mangkurat
Kampus ULM Banjarbaru Gedung 1 Lantai II
Jalan Ahmad Yani Km 36 Banjarbaru Kode Pos 70714
Tel / fax : (0511) 4777055 / (0511) 4777055
email : [email protected]