AUTOMATED MULTI-MODEL PREDICTION AND EVALUATION FOR CONNECTING RAINFALL PREDICTION INFORMATION AND SINGLE-YEAR OPERATIONAL PLAN OF LAHOR-SUTAMI DAM
Abstract
There is a gap between existing climate information and the needs of annual dam operational planning. This study aims to demonstrate that the percentile approach currently used for planning is not optimal, especially now that automation has become more accessible. The purpose of this study is to design an automated forecasting and evaluation system based on 36 10-days rainfall projections using a multi-model approach. This approach comprises a percentile, ARIMA, ECMWF+ARIMA, IOD DMI regression, ERSST regression, and ensemble methods models. Additionally, this study aims to demonstrate how a verified, multi-model-based rainfall forecast can provide more reliable assurance for the annual operational planning of Lahor-SutamiDam, simulated operationally in November 2022 for the 2022/2023 planning cycle. Data utilized include historical 10-days rainfall data from 1991 to 2023, ECMWF raw and corrected model outputs, Nino-Dipole index, and global sea surface temperature. The verification method employs four criteria based on MAE and fit index. An operational simulation approach is used for training-testing period segmentation, while a 10-year window is applied to account for possible climate-change-induced shifts in relationships. Single linear regression is used to avoid overfitting. The automation system was developed using R-Statistics. Results indicate that the current approach is only optimal for 58% of locations. Superior methods identified include ECMWFcorrected, ERSST regression, and Ensemble models. A case study for 2022/2023 demonstrates that the forecast results outperform the existing plan for at least 78% of the projected periods.
Keywords
Full Text:
PDFReferences
Abdullah, S. E. A. N. (2021). Analisis Hubungan Indeks Nino 3.4 dengan Curah Hujan di Jawa Tengah. Buletin Meteorologi, Klimatologi, dan Geofisika, 2 (5), 24-30. P-ISSN 2716-0130.
Anggraeni, D., Kurnia, I. F., & Hadi A. F. (2018). Ensemble averaging and stacking of ARIMA and GSTAR model for rainfall forecasting. IOP Conf. Series: Journal of Physics: Conf. Series. doi:10.1088/1742-6596/1008/1/012019.
Ardhitama, A. & Sholihah, R. (2013). Model Simulasi Prakiraan Curah Hujan Bulanan pada Wilayah Riau dengan Menggunakan Input Data SOI, SST, NINO 3.4, dan IOD. Jurnal Sains & Teknologi Modifikasi Cuaca, 14 (2), 95-104.
Badan Meteorologi Klimatologi dan Geofisika. (2019). Peraturan Badan Meteorologi Klimatologi dan Geofisika Nomor 7 Tahun 2019 tentang Penyediaan dan Penyebaran Prakiraan Musim. Jakarta.
Bestari, A. (2023). Laporan Akhir: Penyusunan Alokasi Air WS Brantas. Surabaya: Balai Besar Wilayah Sungai Brantas.
Chowdary, P.S.M. & M. Anbarasi. (2020). Enhanced Rainfall Predictions using Stacking Technique. Journal of Emerging Technologies and Innovative Research, 7(7).
Deman, M. H., Koppa, A., Waegeman, W., MacLeod, D. A., Singer, M. B., & Miralles D. G. (2022). Seasonal prediction of Horn of Africa long rains using machine learning: The pitfalls of preselecting correlated predictors. Water, 4:1053020. doi: 10.3389/frwa.2022.1053020.
Fathi, M., Azadi, M., Kamali, G., & Meshkatee, H. (2019). Improving Precipitation Forecasts over Iran using A Weighted Average Ensemble Technique. J. Earth Syst. Sci., 128 (133). doi: 10.1007/s12040-019-1145-2.
Gu, J., Liu, S., Zhou, Z., Chalow, S. R. & Zhuang, Q. (2022). A Stacking Ensemble Learning Model for Monthly Rainfall Prediction in the Taihu Basin, China. Water, 14. doi: 10.3390/w14030492.
Hyndman, R. J. & Khandakar, Y. (2008). Automatic time series forecasting: The forecast package for R. Journal of Statistical Software, 27(1), 1–22.
Hurkmans, R. T. W., Hurk, B. V. D., Schmeits, M. S., Wetterhall, F. & Pechlivanidis, I. G. (2023). Seasonal Streamflow Forecasting for Fresh Water Reservoir Management in the Netherlands: An Assessment of Multiple Prediction Systems. Journal of Hydrometeorology, 24 (7): 1275–1290. doi: 10.1175/JHM-D-22-0107.1
Jose, D. M, Vincent, A. M. & Dwarakish, G. S. (2022). Improving Multiple Model Ensemble Predictions of Daily Precipitation and Temperature through Machine Learning Techniques. Scientific Reports, 12: 4678, 1-25. doi: 10.1038/s41598-022-08786-w.
Kartika, Q. A. Faqih, A., Santikayasa, I. P., & Setiyawan, A. M. (2021). Sea Surface Temperature Anomaly Characteristics Affecting Rainfall in Western Java, Indonesia. Agromet, 37 (10), 54-65, doi: 10.29244/j.agromet.37.1.54-65.
Kullahci, A. G. K. & Altunkaynak, A. (2023). Integrating Wavelet Decomposition and Stacking Ensemble learning for Accurate Daily Rainfall Forecasting.
Kundu, S., Biswass, S. K., Tripathi, D., Karmakar, R., Majumdar, S., & Mandal S. (2023). A review on rainfall forecasting using ensemble learning techniques. Advances in Electrical Engineering, Electronics and Energy, 6. doi: 10.1016/j.prime.2023.100296.
Kurniawan, A., Muzayanah, L. F., & Sudirman. (2022). Verifikasi Luaran HyBMG saat Kejadian El Niño & La Niña di Jawa Timur. Buletin GAW Bariri (BGB), 3(2), 8-15. doiI: 10.31172/bgb.v3i2.69. P-ISSN: 2721-7752 | E-ISSN: 2721-9704.
Mahera, U., Ilhamsyah, Y., & Octavina, C. Pengaruh Suhu Muka Laut terhadap Awal Masuk Musim hujan di Wilayah Utara-Timur Aceh. Jurnal Lingkungan Almuslim, 2 (2), 035-049. doi: 10.51179/jla.v2i2.2110
Mahmudiah, R. R., Kurniawan, A. & Makmus, E. E. S. (2019). Determining best East Java monthly rainfall projection using spatial-based validation. IOP Conf. Ser.: Earth Environ. Sci., 303 012023.
Maulita, M., & Nurdin. (2023). Pendekatan Data Mining untuk Analisis Curah Hujan Menggunakan Metode Regresi Linear Berganda (Studi Kasus: Kabupaten Aceh Utara). Jurnal Online Manajemen Informatika, 6 (2), 99-106. ISSN 2684-7280.
Noviasari, T., Nuzula, N. I., Efendy, M., Febrianto, A. A., & Darmadi, A. (2023). Peramalan Curah Hujan terhadap Produktivitas Garam di Gresik Putih Sumenep. Jurnal Kelautan Tropis, 26 (1): 9-18. doi: 10.14710/jkt.v26i1.16139.
Pakdaman, M., Babaeian, I., & Bouwer, L. M. (2022). Improved Monthly and Seasonal Multi-Model Ensemble Precipitation Forecasts in Southwest Asia Using Machine Learning Algorithms. Water, 14. doi: /10.3390/w14172632.
Ruslana, Z. N., Tresnawati, R., Rosyidah, , Harmoko, I. W., & Siswanto. (2021). Reliabilitas Prediksi Curah Hujan Dasarian Pada Kejadian Curah Hujan Ekstrim Pemicu Banjir 26 Oktober 2020 di Kebumen: Model Statistik (HyBMG) versus Model Dinamik (ECMWF). Jurnal Geosains dan Teknologi, 4(2).
Raju, K. S. & Kumar, D. N. (2020). Review of Approaches for Selection and Ensembling of GCMs. Journal of Water and Climate Change, 11, 577-599. doi: 10.2166/wcc.2020.128.
Specq, D., Batte, L., Deque, M., & Ardilouze, C. (2020). Multimodel Forecasting of Precipitation at Subseasonal Timescales Over the Southwest Tropical Pacific. Earth and Space Science, 7(9). doi: 10.1029/2019EA001003.
Tuysuzoglu, G., Birant, U. K., & Birant, D. (2023). Rainfall Prediction Using an Ensemble Machine Learning Model Based on K-Stars. Sustainability, 15, doi: 10.3390/su15075889.
Wei, X., Sun, X., Sun, J., Yin, J., Sun J. & Liu, C. (2022). A Comparative Study of Multi-Model Ensemble Forecasting Accuracy between Equal and Variant Weight Techniques. Atmosphere, 13(4). doi: 1-.3390/atmos13040526.
Weisheimer, A. & Palmer, T. (2014). On the Reliability of Seasonal Climate Forecast. Journal of the Royal Society Interface, 11 (96). doi: 10.1098/rsif.2013.162.
Weyn, J. A., Durran, D. R., Caruanam Rm & Cresswell-Clay, N. (2021). Sub-Seasonal Forecasting with a Large Ensemble of Deep-Learning Weather Prediction Models. Journal of Advances in Modeling Earth Systems, 13. doi: 10.1029/2021MS002502
Willmot, C. & Matsuura. (2005). Advantages of the Mean Absolute Error (MAE) over the Root Mean Square Error (RMSE) in assessing average model performance. Clim. Res., 30: 79-82.
Zhai, A., Fan, G., Ding, X., & Huang G. (2022). Regression Tree Ensemble Rainfall–Runoff Forecasting Model and Its Application to Xiangxi River, China. Water, 14. doi: 10.3390/w14030463.
DOI: http://dx.doi.org/10.20527/es.v20i4.21054
Article Metrics
Abstract view : 183 timesPDF - 52 times
Refbacks
- There are currently no refbacks.
EnviroScienteae is licensed under a Creative Commons Attribution 4.0 International License
ISSN : 2302-3708 (Online version)
Program Studi Pengelolaan Sumberdaya Alam dan Lingkungan
Program Pascasarjana Universitas Lambung Mangkurat
Kampus ULM Banjarbaru Gedung 1 Lantai II
Jalan Ahmad Yani Km 36 Banjarbaru Kode Pos 70714
Tel / fax : (0511) 4777055 / (0511) 4777055
email : [email protected]