Miftahul Munir, Arief R. M. Akbar, Badaruddin Badaruddin, Raiwani Wahdah


This research’s aim was to identify the relationship between weather element with PM10 concentration in Banjarbaru both during normal condition and during smoke fog (smog) condition, to study the condition’s effect afflicts to weather element and PM10 concentration in ambient air and to determine standard quality concentration PM10’s threshold in ambient air during smog condition. The data were 10 minute PM10, humidity, and temperature and daily weather of 2015 that obtained from Banjarbaru Climatology Station meanwhile data of hotspot’s in South Kalimantan at 2015 was taken from MODIS satellite of Terra Aqua owned by NOAA. The 10 minutes data has been clustered using K-means method and the daily weather element relationship with PM10 concentration obtained based on regression analysis. When normal conditions, only temperature, and duration of irradiance were significantly has positively correlated with PM10 concentration, air humidity and significant rainfall are negatively correlated, the remain is not significant in effect, while during smog conditions; temperature, duration of irradiation, air pressure, average wind velocity, and maximum significant wind speed are positively correlated, air humidity, and rainfall significantly negatively correlated. Based on the results of K-means clustering analysis of PM10 concentration, there was higher humidity, higher temperature, and PM10 concentrations were below the standard quality threshold under normal conditions while in the case of smog conditions, lower humidity, lower temperature, and PM10 concentrations were above the quality standard threshold. PM10 concentration during smog condition reaches dangerous status/above the standard quality threshold before dry season until late dry season at 02.20 is in the dusk until 12.30 pm.


K-Means; PM10; Regression; Smog; Weather

Full Text:



Abdullah, N. A., Shuhaimi, S. H., Ying, T. Y., & Shapee, A. H. (2011). The study of seasonal variation of PM10 concentration in Peninsular, Sabah and Sarawak. Malaysian Meteorological Department, 9, 1–28.

Antara News. (2015). Kabut asap di Banjarbaru makin pekat. Diambil dari [14 September 2015].

Anwar, A., Juneng, L., Othman, M. R., & Latif, M. T. (2010). Correlation between hotspots and air quality in Pekanbaru, Riau, Indonesia in 2006-2007. Sains Malaysiana, 39(2), 169–174.

Barmpadimos, I., Hueglin, C., Keller, J., Henne, S., & Prévôt, A. S. H. (2011). Influence of meteorology on PM10 trends and variability in Switzerland from 1991 to 2008. Atmospheric Chemistry and Physics, 11(4), 1813–1835.

Barry, R. G., & Chorley, R. J. (2009). Atmosphere, weather and climate. Routledge.

Bhaskar, B. V., & Mehta, V. M. (2010). Atmospheric particulate pollutants and their relationship with meteorology in Ahmedabad. Aerosol and Air Quality Research, 10(4), 301–315.

Bhugwant, C., & Brémaud, P. (2001). Simultaneous Measurements of Black Carbon , PM 10 , Ozone and NO x Variability at a Locally Polluted Island in the Southern Tropics. Journal of Atmospheric Chemistry, 39(x), 261–280.

Chantara, S. (2012). PM10 and Its Chemical Composition : A Case Study in Chiang Mai, Thailand. Air Quality – Monitoring and Modeling, 230.

Desonie, D. (2007). Atmosphere. New York: Chelsea House.

Evagelopoulos, V., Zoras, S., Triantafyllou, A. G., & Albanis, T. A. (2006). PM10 -PM2.5 time series and fractal analysis. Global NEST Journal, 8(3), 234–240.

Faisal, F., & Ulfah, A. M. (2009). Korelasi antara Total Curah Hujan terhadap Kadar SPM pada Tahun 2004-2008 di Jakarta dalam Proses Pembersihan Atmosfer oleh Hujan. Buletin Meteorologi dan Geofisika, 5(3), 263–274.

Giarno, Dupe, Z. L., & Mustofa, M. A. (2012). Kajian awal musim hujan dan awal musim kemarau di indonesia. Jurnal Mkg, 13(1), 1–8.

Giri, D., Murthy, K., & Adhikary, P. R. (2008). The Influence of Meteorological Conditions on PM 10 Concentrations in Kathmandu Valley. International Journal of Environmental Resources, 2(1), 49–60.

Gomišček, B., Hauck, H., Stopper, S., & Preining, O. (2004). Spatial and temporal variations of PM1, PM2.5, PM10 and particle number concentration during the AUPHEP - Project. Atmospheric Environment, 38(24), 3917–3934.

Groot, W. J. De, Field, R. D., Brady, M. A., Roswintiarti, O., & Mohamad, M. (2007). Development of the Indonesian and Malaysian fire danger rating systems. Mitigation and Adaptation Strategies for Global Change, 12(1), 165–180.

Guerard, J. B. (2013). Introduction to financial forecasting in investment analysis. Introduction to Financial Forecasting in Investment Analysis, (2007), 1–236.

Huang, W., Long, E., Wang, J., Huang, R., & Ma, L. (2015). Characterizing spatial distribution and temporal variation of PM10 and PM2.5 mass concentrations in an urban area of Southwest China. Atmospheric Pollution Research, 6(5), 842–848.

Ilahi, A. F., & Nurhayati. (2012). Karakteristik dan klimatologi polutan PM10 di bukit kototabang. Megasains, 3(3), 138–153.

Kalabokas, P. D., Adamopoulos, A. D., & Viras, L. G. (2010). Atmospheric Pm 10 Particle Concentration Measurements At Central and Peripheral Urban Sites in Athens and Thessaloniki, Greece. Global NEST Journal, 12(1), 71–83.

Kang, D. Du, Lee, D. I., Jung, J.-W., & Kim, K. (2013). Dynamical Characteristics in Time Series Between PM10 and Wind Speed. Proceedings of the 2013 International Conference on Environment, Energy, Ecosystems and Development Dynamical, 1(1), 78–82.

Krynicka, J., & Drzeniecka-Osiadacz, A. (2013). Analysis of Variability in PM 10 Concentration in the Wrocław Agglomeration. Polish Journal of Environmental Studies, 22(4), 1091–1099.

Lawson, B. D., & Armitage, O. B. (2008). Weather Guide Canadian Forest Fire Danger Rating System. Nat. Resour. Can., Can. For. Serv., North. For. Cent. Edmonton, AB.

MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate observations. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1(233), 281–297.

Makra, L., Mayer, H., Mika, J., Sánta, T., & Holst, J. (2010). Variations of traffic related air pollution on different time scales in Szeged, Hungary and Freiburg, Germany. Physics and Chemistry of the Earth, 35(1–2), 85–94.

Mkoma, S. L., & Mjemah, I. C. (2011). Influence of Meteorology on Ambient Air Quality in Morogoro , Tanzania. International of Environmental Sciences, 1(6), 1107–1115.

Oyelade, O. J., Oladipupo, O. O., & Obagbuwa, I. C. (2010). Application of k Means Clustering algorithm for prediction of Students Academic Performance. International Journal of Computer Science and Information Security, 7(1), 292–295. Diambil dari

Pohjola, M. A., Kousa, A., Kukkonen, J., Harkonen, J., Karppinen, A., Aarnio, P., & Koskentalo, T. (2002). the Spatial and Temporal Variation of Measurement Urban PM10 and PM2.5 in the Helsinki Metropolitan Area. Water, Air, and Soil Pollution: Focus.

Rashid, M., Yunus, S., Mat, R., Baharun, S., & Lestari, P. (2014). PM 10 black carbon and ionic species concentration of urban atmosphere in Makassar of South Sulawesi Province, Indonesia. Atmospheric Pollution Research, 5(4), 610–615.

Satsangi, P. G., Kulshrestha, a, Taneja, A., & Rao, P. S. P. (2011). Measurements of PM 10 and PM 2.5 aerosols in Agra, a semi-arid region of India. Indian Journal of Radio and Space Physics, 40(August), 203–210.

Seinfeld, J. H., & Pandis, S. N. (2006). Atmospheric. from Air Pollution to Climate Change.

Shaadan, N., Mohd Deni, S., & Jemain, A. A. (2012). Assessing and Comparing PM 10 Pollutant Behaviour using Functional Data Approach. Sains Malaysiana, 41(11), 1335–1344.

Suciarti. (2013). Sistem Informasi Tingkat Bahaya Kebakaran Hutan dan Lahan Dengan Menggunakan Fire Weather Index (FWI) dan SIG Arcview. Jurnal Teknik Elektro Universitas Tanjungpura, 1(1), 1–9.

Tiwari, S., Chate, D. M., Pragya, P., Ali, K., & Bisht, D. S. F. (2012). Variations in mass of the PM 10,PM 2.5 and PM 1 during the monsoon and the winter at New Delhi. Aerosol and Air Quality Research, 12(1), 20–29.

Turyanti, A. (2011). Analisis Pengaruh Faktor Meteorologi terhadap Konsentrasi PM10 menggunakan Regresi Linier Berganda (Studi Kasus: Daerah Dago Pakar dan Cisaranten, Bandung). J. Agromet Indonesia, 25(1), 29–36.

Ulfah, A., & Sulistya, W. (2015). Penentuan Kriteria Musim Alternatif Di Wilayah Jawa Timur. Jurnal Meteorologi dan Geofisika, 16(3), 145–153.

Wang, Y. Q., Zhang, X. Y., Sun, J. Y., Zhang, X. C., Che, H. Z., & Li, Y. (2015). Spatial and temporal variations of the concentrations of PM10, PM2.5 and PM1 in China. Atmospheric Chemistry and Physics, 15(23), 13585–13598.

Yadav, J., & Sharma, M. (2013). A Review of K-mean Algorithm. International Journal of Engineering Trends and Technology, 4(7), 2972–2976.

Yoo, J. M., Lee, Y. R., Kim, D., Jeong, M. J., Stockwell, W. R., Kundu, P. K., … Lee, S. J. (2014). New indices for wet scavenging of air pollutants (O3, CO, NO2, SO2, and PM10) by summertime rain. Atmospheric Environment, 82(2), 226–237.


Article Metrics

Abstract view : 200 times
PDF - 153 times


  • There are currently no refbacks.

Creative Commons License
EnviroScienteae is licensed under a Creative Commons Attribution 4.0 International License

ISSN : 2302-3708 (Online version)  ISSN : 1978-8096 (Print version)

Program Studi Pengelolaan Sumberdaya Alam dan Lingkungan
Program Pascasarjana Universitas Lambung Mangkurat
Kampus ULM Banjarbaru Gedung 1 Lantai II
Jalan Ahmad Yani Km 36 Banjarbaru Kode Pos 70714
Tel / fax : (0511) 4777055 / (0511) 4777055
email :