Bioremediasi Tanah Terkontaminasi Hidrokarbon Menggunakan Teknik Bioaugmentasi
Abstract
Among various bioremediation methods, bioaugmentation is the one which frequently used. In this study, bioaugmentation was conducted by utilising Pseudomonas aeruginosa, Bacillus cereus, and Brevibacterium flavum. Many studies on and implementations of this method have been conducted. However, this method still needed to be studied especially with reference to its implementations to small automotive workshops, which their number was increasing, as the sources of the soil contamination. The objective of this study was to identify the most effective bacteria in removing total hydrocarbon content (TPH) from contaminated soils and to understanding several characteristics of the method. Laboratory research was set up and the experimental design was complete randomised design (CRD) with three replications. Statistical test of Anova with α 5% was carried out to evaluate the results of the study. The treatments of this study were three species of bacteria which were inoculated separately into the contaminated soils. The parameters were TPH, pH and the density of bacteria consortiums. The highest effective removal of TPH was showed by P. aeruginosa, 64,1% (δ+2,61%), followed by B. flavum and B cereus. This treatment had pH dropped two points and the density of bacteria consortium increased 6-10 times. The main limitation of this study was the number of parameters which was a few resulting difficulties in understanding the hydrocarbon degradation processes. The results of this study may give significant contributions to managers of small automotive workshops in cities which currently are not managed their spills properly.
Keywords
Full Text:
PDFReferences
Agarry, S., & Jimoda, L. (2013). Application of Carbon-Nitrogen Supplementation from Plant and Animal Sources in In-situ Soil Bioremediation of Diesel Oil: Experimental Analysis and Kinetic Modelling.
Ali, N., Dashti, N., Al-Mailem, D., Eliyas, M., & Radwan, S. (2012). Indigenous soil bacteria with the combined potential for hydrocarbon consumption and heavy metal resistance. Environmental Science and Pollution Research, 19(3), 812-820.
Anaukwu, C. G., Ezemba, C. C., Anakwenze, V. N., Agu, K. C., Nwankwegu, A. S., Okeke, B. C., & Awah, N. S. (2016). Influence of anionic, cationic and non-ionic surfactants on growth of hydrocarbon utilizing bacteria. American Journal of Current Microbiology, 4(1), 10-16.
Andriiash, G., Zabolotna, G., Tkachenko, A., Blume Ya, B., & Shulga, S. (2015). Threonine synthesis of Brevibacterium flavum mutant strain. Threonine: Food Sources, Functions and Health Benefits, 1-26.
Banat, I. M., Satpute, S. K., Cameotra, S. S., Patil, R., & Nyayanit, N. V. (2014). Cost effective technologies and renewable substrates for biosurfactants’ production. Frontiers in Microbiology, 5, 697.
Bao, M.-t., Wang, L.-n., Sun, P.-y., Cao, L.-x., Zou, J., & Li, Y.-m. (2012). Biodegradation of crude oil using an efficient microbial consortium in a simulated marine environment. Marine pollution bulletin, 64(6), 1177-1185.
Bastiaens, L., Springael, D., Wattiau, P., Harms, H., deWachter, R., Verachtert, H., & Diels, L. (2000). Isolation of adherent polycyclic aromatic hydrocarbon (PAH)-degrading bacteria using PAH-sorbing carriers. Appl. Environ. Microbiol., 66(5), 1834-1843.
Borah, D., & Yadav, R. (2014). Biodegradation of complex hydrocarbon by a novel Bacillus cereus strain. Journal of Environmental Science and Technology, 7(3), 176-184.
Bragg, J. R., Prince, R. C., Harner, E. J., & Atlas, R. M. (1994). Effectiveness of bioremediation for the Exxon Valdez oil spill. Nature, 368(6470), 413-418.
Button, D. K., Robertson, B. R., McIntosh, D., & Jüttner, F. (1992). Interactions between marine bacteria and dissolved-phase and beached hydrocarbons after the Exxon Valdez oil spill. Applied and Environmental Microbiology, 58(1), 243-251. Retrieved from https://aem.asm.org/content/aem/58/1/243.full.pdf
Chen, M., Xu, P., Zeng, G., Yang, C., Huang, D., & Zhang, J. (2015). Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: applications, microbes and future research needs. Biotechnology Advances, 33(6), 745-755.
Das, N., & Chandran, P. (2010). Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnology research international, 2011.
Deng, Z., Jiang, Y., Chen, K., Gao, F., & Liu, X. (2020). Petroleum Depletion Property and Microbial Community Shift After Bioremediation Using Bacillus halotolerans T-04 and Bacillus cereus 1-1. Frontiers in Microbiology, 11, 353.
Forquin-Gomez, M.-P., Weimer, B. C., Sorieul, L., Kalinowski, J., & Vallaeys, T. (2014). The family Brevibacteriaceae. Prokaryotes Actinobacteria. 4th ed. Berlin, Heidelberg: Springer, 141-153.
Franzetti, A., Di Gennaro, P., Bevilacqua, A., Papacchini, M., & Bestetti, G. (2006). Environmental features of two commercial surfactants widely used in soil remediation. Chemosphere, 62(9), 1474-1480.
Harayama, S., Kishira, H., Kasai, Y., & Shutsubo, K. (1999). Petroleum biodegradation in marine environments. Journal of molecular microbiology and biotechnology, 1(1), 63-70.
Harvey, S., Elashvili, I., Valdes, J. J., Kamely, D., & Chakrabarty, A. M. (1990). Enhanced Removal of Exxon Valdez Spilled Oil from Alaskan Gravel by a Microbial Surfactant. Bio/Technology, 8(3), 228-230. doi:10.1038/nbt0390-228
Hedlund, B. P., & Staley, J. T. (2001). Vibrio cyclotrophicus sp. nov., a polycyclic aromatic hydrocarbon (PAH)-degrading marine bacterium. International Journal of Systematic and Evolutionary Microbiology, 51(1), 61-66.
Heipieper, H., & Martínez, P. (2010). Toxicity of hydrocarbons to microorganisms Handbook of hydrocarbon and lipid microbiology.
Hilpert, M., Mora, B. A., Ni, J., Rule, A. M., & Nachman, K. E. (2015). Hydrocarbon Release During Fuel Storage and Transfer at Gas Stations: Environmental and Health Effects. Current Environmental Health Reports, 2(4), 412-422. doi:10.1007/s40572-015-0074-8
Hua, F., & Wang, H. Q. (2014). Uptake and trans-membrane transport of petroleum hydrocarbons by microorganisms. Biotechnology & Biotechnological Equipment, 28(2), 165-175. doi:10.1080/13102818.2014.906136
Huang, Q.-G., Zeng, B.-D., Liang, L., Wu, S.-G., & Huang, J.-Z. (2018). Genome shuffling and high-throughput screening of Brevibacterium flavum MDV1 for enhanced L-valine production. World Journal of Microbiology and Biotechnology, 34(8), 121.
Irshad, S., Faisal, M., Hashmi, A., Javed, M., Baber, M., Awan, A., & Anjum, A. (2015). Mass production and recovery of l-lysine by microbial fermentation using Brevibacterium flavum. J Anim Plant Sci, 25, 290-294.
Irshad, S., Hashmi, A., Javed, M., Babar, M., Awan, A., & Anjum, A. (2015). Optimization Of Physico-Chemical Parameters For Hyper-Production Of Lysine By Mutated Strain Of Brevibacterium flavum. JAPS, Journal of Animal and Plant Sciences, 25(3), 784-791.
Irshad, S., Hashmi, A. S., Babar, M. E., Awan, A. R., Javed, M. M., & Anjum, A. A. (2015). Bioconversion of Agricultural By-Products to Lysine by Brevibacterium flavum and Physico-Chemical Optimization for Hyper-production. Journal of the Chemical Society of Pakistan, 37(2).
Janaki, S., Thenmozhi, S., & Muthumari, R. (2016). A study on hydrocarbon degradation by biosurfactant producing Bacillus cereus in oil contaminated soil samples. Int. J. Life Sci. Sci. Res, 2, 324-332.
Jørgensen, K., Puustinen, J., & Suortti, A.-M. (2000). Bioremediation of petroleum hydrocarbon-contaminated soil by composting in biopiles. Environmental Pollution, 107(2), 245-254.
Kanaly, R. A., & Harayama, S. (2000). Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. Journal of bacteriology, 182(8), 2059-2067.
Khamforoush, M., Bijan-Manesh, M.-J., & Hatami, T. (2013). Application of the Haug model for process design of petroleum hydrocarbon-contaminated soil bioremediation by composting process. International Journal of Environmental Science and Technology, 10(3), 533-544.
Kim, K.-H., Jahan, S. A., Kabir, E., & Brown, R. J. (2013). A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environment international, 60, 71-80.
Kisic, I., Jurisic, A., Durn, G., Mesic, H., & Mesic, S. (2010). Effects of hydrocarbons on temporal changes in soil and crops. Afr. J. Agric. Res, 5, 1821-1829.
Kurniawan, A., & Effendi, A. J. (2014). Biodegredasi residu total petroleum hidrokarbon di bawah konsentrasi 1% (W/W) hasil proses bioremdiasi. J.Manusia Lingkungan, 21(3), 9.
Lee, S.-H., Oh, B.-I., & Kim, J.-g. (2008). Effect of various amendments on heavy mineral oil bioremediation and soil microbial activity. Bioresource technology, 99(7), 2578-2587.
Leys, N. M., Bastiaens, L., Verstraete, W., & Springael, D. (2005). Influence of the carbon/nitrogen/phosphorus ratio on polycyclic aromatic hydrocarbon degradation by Mycobacterium and Sphingomonas in soil. Applied microbiology and biotechnology, 66(6), 726-736.
Manna Sahoo, S., Datta, S., & Biswas, D. (2011). Optimization of Culture Conditions for Biosurfactant Production from Pseudomonas aeruginosa OCD1. Journal of Advanced Scientific Research, 2, 32-36.
Mohamed, H. B., El Nady, G. H., Ali, A., Abdel-Razik, A., & Ibrahim, S. (2018). Production Of L-Tryptophan By Mutants Of Corynebacterium glutamicum. Arab Universities Journal of Agricultural Sciences, 26(Special issue (2A)), 1187-2018.
Nwankwegu, A. S., & Onwosi, C. O. (2017). Bioremediation of gasoline contaminated agricultural soil by bioaugmentation. Environmental Technology & Innovation, 7, 1-11. doi:https://doi.org/10.1016/j.eti.2016.11.003
Okerentugba, P., & Ezeronye, O. (2003). Petroleum degrading potentials of single and mixed microbial cultures isolated from rivers and refinery effluent in Nigeria. African Journal of Biotechnology, 2(9), 288-292.
Oyewole, O., Zobeashia, S. L. T., Oladoja, O., Musa, I., & Terhemba, I. (2020). Isolation of bacteria from diesel contaminated soil for diesel remediation. Journal of Bio-Science, 28, 33-41.
Patowary, K., Patowary, R., Kalita, M. C., & Deka, S. (2016). Development of an efficient bacterial consortium for the potential remediation of hydrocarbons from contaminated sites. Frontiers in Microbiology, 7, 1092.
PPT (1995). Petunjuk Teknis Evaluasi Kesuburan Tanah. Laporan Teknis No.14. Versi 1,0. 1. REP II Project, CSAR, Bogor
Prakash, V., Saxena, S., Sharma, A., Singh, S., & Singh, S. K. (2015). Treatment of oil sludge contamination by composting. Journal of Bioremediation & Biodegredation, 6(3), 1.
Qian, X., Shen, G., Wang, Z., Guo, C., Liu, Y., Lei, Z., & Zhang, Z. (2014). Co-composting of livestock manure with rice straw: Characterization and establishment of maturity evaluation system. Waste Management, 34(2), 530-535. doi:https://doi.org/10.1016/j.wasman.2013.10.007
Ramadass, K., Megharaj, M., Venkateswarlu, K., & Naidu, R. (2016). Soil bacterial strains with heavy metal resistance and high potential in degrading diesel oil and n-alkanes. International Journal of Environmental Science and Technology, 13(12), 2863-2874.
Ramadass, K., Megharaj, M., Venkateswarlu, K., & Naidu, R. (2018). Bioavailability of weathered hydrocarbons in engine oil-contaminated soil: Impact of bioaugmentation mediated by Pseudomonas spp. on bioremediation. Science of the Total Environment, 636, 968-974. doi:https://doi.org/10.1016/j.scitotenv.2018.04.379
Renung Reningtyas, R., & Mahreni, M. (2015). Biosurfaktan. Eksergi, Vol XII, No. 2. 2015, 12(2), 12-22.
Samanta, S., Bhushan, B., & Jain, R. (2001). Efficiency of naphthalene and salicylate degradation by a recombinant Pseudomonas putida mutant strain defective in glucose metabolism. Applied microbiology and biotechnology, 55(5), 627-631.
Samanta, S. K., Singh, O. V., & Jain, R. K. (2002). Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends in biotechnology, 20(6), 243-248.
Sarkar, P., Roy, A., Pal, S., Mohapatra, B., Kazy, S. K., Maiti, M. K., & Sar, P. (2017). Enrichment and characterization of hydrocarbon-degrading bacteria from petroleum refinery waste as potent bioaugmentation agent for in situ bioremediation. Bioresource technology, 242, 15-27.
Sharma, D., Ansari, M. J., Al-Ghamdi, A., Adgaba, N., Khan, K. A., Pruthi, V., & Al-Waili, N. (2015). Biosurfactant production by Pseudomonas aeruginosa DSVP20 isolated from petroleum hydrocarbon-contaminated soil and its physicochemical characterization. Environmental Science and Pollution Research, 22(22), 17636-17643. doi:10.1007/s11356-015-4937-1
Shekhar, S. K., Godheja, J., & Modi, D. (2015). Hydrocarbon bioremediation efficiency by five indigenous bacterial strains isolated from contaminated soils. Int. J. Curr. Microbiol. App. Sci, 4(3), 892-905.
Tabassum, A., Hashmi, A. S., Masood, F., Iqbal, M. A., Tayyab, M., Nawab, A., . . . Mahmood, A. (2015). Bioconversion of agriculture waste to lysine with UV mutated strain of brevibacterium flavum and its biological evaluation in broiler chicks. Pakistan journal of pharmaceutical sciences, 28(4).
Thavasi, R., Jayalakshmi, S., & Banat, I. M. (2011). Effect of biosurfactant and fertilizer on biodegradation of crude oil by marine isolates of Bacillus megaterium, Corynebacterium kutscheri and Pseudomonas aeruginosa. Bioresource technology, 102(2), 772-778. doi:https://doi.org/10.1016/j.biortech.2010.08.099
Tuhuloula, A., Suprapto, S., Altway, A., & Juliastuti, S. R. (2019). Biodegradation of Extractable Petroleum Hydrocarbons by Consortia Bacillus cereus and Pseudomonas putida in Petroleum Contaminated-Soil. Indonesian Journal of Chemistry, 19(2), 347-355.
Ubogu, M., Odokuma, L. O., & Akponah, E. (2019). Autochthonous Microbial Bioaugmented Remediation of Crude Oil Contaminated Soil in the Niger Delta.
Udiharto, M. (2000). Hubungan Antara Tingkat Toksisitas dan Hidrokarbon Aromatik yang Terkandung dalam Lumpur Pengeboran dan Bahan Dasarnya. Lembaran Publikasi Lemigas, 3, 3-8.
Van Gestel, K., Mergaert, J., Swings, J., Coosemans, J., & Ryckeboer, J. (2003). Bioremediation of diesel oil-contaminated soil by composting with biowaste. Environmental Pollution, 125(3), 361-368.
Wieczorek, D., Marchut-Mikolajczyk, O., & Antczak, T. (2015). Changes in microbial dehydrogenase activity and pH during bioremediation of fuel contaminated soil. BioTechnologia. Journal of Biotechnology Computational Biology and Bionanotechnology, 96(4).
Xu, Y., & Lu, M. (2010). Bioremediation of crude oil-contaminated soil: comparison of different biostimulation and bioaugmentation treatments. Journal of hazardous materials, 183(1-3), 395-401.
Zafra, G., Absalón, Á. E., Cuevas, M. D. C., & Cortés-Espinosa, D. V. (2014). Isolation and selection of a highly tolerant microbial consortium with potential for PAH biodegradation from heavy crude oil-contaminated soils. Water, Air, & Soil Pollution, 225(2), 1826.
Zam, S. I. (2011, 19 Februari 2011). Bioremediasi Limbah Pengilangan Minyak Bumi Dengan Menggunakan Bakteri Indigen Secara Invitro (Invitro Bioremediation Of Oil Refinery Waste By Indigenous Bacteria). Paper presented at the Prosiding Seminar Nasional Kimia Unesa 2011, Surabaya.
DOI: http://dx.doi.org/10.20527/es.v16i2.9663
Article Metrics
Abstract view : 1400 timesPDF - 1430 times
Refbacks
- There are currently no refbacks.
EnviroScienteae is licensed under a Creative Commons Attribution 4.0 International License
ISSN : 2302-3708 (Online version)
Program Studi Pengelolaan Sumberdaya Alam dan Lingkungan
Program Pascasarjana Universitas Lambung Mangkurat
Kampus ULM Banjarbaru Gedung 1 Lantai II
Jalan Ahmad Yani Km 36 Banjarbaru Kode Pos 70714
Tel / fax : (0511) 4777055 / (0511) 4777055
email : [email protected]