Sintesis Komposit ZnO/Ca3(PO4)2 menggunakan metode Sol-gel sebagai Material Fotokatalis Limbah Cair Industri (Metilen Biru)
Abstract
This study use composite ZnO/Ca3(PO4)2 material was synthesized by using the sol-gel method. Composite material ZnO/Ca3(PO4)2 is made from beef tailbone which is heated at a temperature of 300 for 10, 90, 120, and 240 minutes. Samples were characterized using X-ray diffraction ( XRD ), Fourier transforms infrared ( FTIR ) dan UV - Visible ( UV-Vis ). Quantitative analysis of XRD spectra showed the lowest crystal size with a diameter of 21.71 nm on heating for 90 m. The results of the FTIR spectrum show the vibration of the PO4 and ZnO bond at wavenumber 1039 cm-1 and 400-500 cm-1. The best percentage of degradation is indicated by small crystal size and high infrared absorption by O-H bonds. The degradation results reached 93.98% in just 5 minutes with an energy gap of 3.84 eV. Based on these results, the ZnO/Ca3(PO4)2 composite is one of the promising and potential catalyst materials to solve the problem of industrial waste pollution, especially methylene blue.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Adeleke, J.T., Theivasanthi, T., Thiruppathi, M., Swaminathan, M., Akomolafe, T., & Alabi, A.B.. (2018). Photocatalytic degradation of methylene blue by ZnO/NiFe2O4 nanoparticles. Applied Surface Science, 455, 195-200. https://doi.org/10.1016/j.apsusc.2018.05.184
Alessandra, D., Johannes, K., Massimo, L., Emanuela, C., Stefania, M., Paolo, G., Altero, A., Loretta, G., Silvia, L., & Luisa, M. (2018). Qualitative Analysis of Traditional Italian Dishes:FTIR Approach. Sustainability, 10, 4112. https://doi.org/10.3390/su10114112
Anabel, D.A., Patricia, R.T., Patricia, M., Piedad, N.D.A. (2020). In vitro characterization of new biphasic scaffolds in the sub-system Ca3(PO4)2-Ca5SiP2O12. Ceramics International, 46(11), 18123-18130. https://doi.org/10.1016/j.ceramint.2020.04.133
Azfar, A.K., Kasim, M.F., Lokman, I.M., Rafaie, H.A,. & Mastuli, M.S. (2021). Comparative study on photocatalytic activity of transition metals (Ag and Ni)-doped ZnO nanomaterials synthesized via sol–gel method. 7(2),191590. http://dx.doi.org/10.1098/rsos.191590
Azhar A.K., & J, Yan, C.Y.Z. (2021). Investigating the effects of ZnO dopant on the thermodynamic and kinetic properties of CaCO3/CaO TCES system. Energy. 215, 119132. https://doi.org/10.1016/j.energy.2020.119132
Bahrul, U., Sultan, I., Ahmad, N.F., Inayatul, M., Muhammad, A.A., Nurfina, Y., Eymal, B., Demmalino & Dahlang, T. (2020). Composite carbon-lignin/ zinc oxide nanocrystalline ball-like hexagonal mediated from Jatropha curcas L leaf as photocatalyst for industrial dye degradation. Journal of Inorganic and Organometallic Polymers and Materials, 30(12), 4905-4916. https://doi.org/10.1007/s10904-020-01631-5
Choudhary, I., Shukla, R., Sharma, A., Raina, K. (2020). Effect of excitation wavelength ang europium doping on the optical properties of nanoscale zinc oxide, Journal of Materials Science: Materials in Electronics, 31, 20033-20042. https://doi.org/10.1007/s10854-020-04525-x
Daria, S., Sindu, S., Oleksandr, P., Sviatlana, L., Martina B., Mikhail, Z., Franz, F., Rainer, A., Yogendra, K.M. (2019). Mutual interplay of ZnO micro-and nanowires and methylene blue during cyclic photocatalysis process. Journal of Environmental Chemical Engineering, 7(2), 103016. https://doi.org/10.1016/j.jece.2019.103016
Dragana, Š., Christos, A.A., Goran Š, Marinos, D., Mladenka, N., Tamara, I., & Spyros, N.Y. (2018). Photocatalytic degradation of naproxen and methylene blue: Comparison between ZnO, TiO2 and their mixture. Process Safety and Environmental Protection, 113, 174-183. https://doi.org/10.1016/j.psep.2017.10.007
Elhalil, A., Elmoubarki, R., Farnane, M., Machrouhi, A., Mahjoubi, F,Z., Sadiq, M., Qourzal, S., & Barka, N. (2018). Synthesis, characterization and efficient photocatalytic activity of novel Ca/ZnO-Al2O3 nanomaterial. Materialstoday communications, 16, 194-203. https://doi.org/10.1016/j.mtcomm.2018.06.005
Hend, A.E., & Ahmed, M.I. Effective Fabrication and Characterization of Eco-friendly Nano Chitosan Capped Zinc Oxide Nanoparticles for Effective Marine Fouling Inhibition. Journal of Environmental Chemical Engineering, 8(4), 103949. https://doi.org/10.1016/j.jece.2020.103949
Jiaojiao, L., Zhanzhou, L., Jiaojiao, L., & Ping Li. (2018). Photocatalytic degradation of methylene blue in aqueous solution by using ZnO-SnO2 nanocomposites. Materials Science in Semiconductor Processing, 87(15), 24-31. https://doi.org/10.1016/j.mssp.2018.07.003
Kalpesh, A.I., & Vinod S.S. (2019). Photocatalytic degradation of methylene blue using ZnO and 2%Fe–ZnO semiconductor nanomaterials synthesized by sol–gel method: a comparative study. 1, 1247. https://doi.org/10.1007/s42452-019-1279-5
Maria, M.F.F., Ikhmal, W.M.K.W.M., Amirah, M.N.N.S., Manja, S.M. Syaizwadi, S.M., Chan, K.S., Sabri, M.G.M., & Adnan, A. (2019). Green approach in anti-corrosion coating by using Andrographis paniculata leaves extract as additives of stainless steel 316L in seawater. Journal of Corrosion and Scale Inhibition, 8(3), 644-658. https://doi.org/10.17675/2305-6894-2019-8-3-13
Muhammad, R.I., Mukhlasur, R,S.F.U., Farhadb & J, Poddera. (2019). Structural, optical and photocatalysis properties of sol–gel deposited Aldoped ZnO thin films. Journal of Inorganic and Organometallic Polymers and Materials, 16, 120-126. https://doi.org/10.1016/j.surfin.2019.05.007
Naciri, Y., A, Hsini., Z. Ajmal, A. Bouddouch, B. Bakiz, J.A. Navío, A. Albourine, J-C. Valmalette, M. Ezahri, & A. Benlhachemi. (2020). Influence of Sr-doping on structural, optical and photocatalytic properties of synthesized Ca3(PO4)2. Journal of Colloid and Interface Science, 572, 269-280. https://doi.org/10.1016/j.jcis.2020.03.105
Naik, E.I., Naik, H.S.B., Swamy, B.E.K., Viswanath, R., Gowda, I.K.S., Prabhakara, M.C., & Chetankumar, K. (2021). Influence of Cu doping on ZnO nanoparticles for improved structural, optical, electrochemical properties and their applications in efficient detection of latent fingerprints. Chemical Data Collections, 33, 100671 https://doi.org/10.1016/j.cdc.2021.100671
Nandini, R., & Santanu, C. (2020). ZnO as photocatalyst: An approach to waste water treatment. Materials Today: Proceedings, 46(14), 6399-6403. https://doi.org/10.1016/j.matpr.2020.06.264
Nguyen, T.H., Nguyen L.M.T., Doan, V.T., Mai, H.T.T., Thanh-Dong, P., Tran, D.M., Hoang, T.T., Mai T.B., Minh V.N. (2019). Monocrotophos pesticide effectively removed by novel visible light driven Cu doped ZnO photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 382, 111923. https://doi.org/10.1016/j.jphotochem.2019.111923
Noah, A.Z., Semary, M.A.E., Youssef, A.M., & El-Safty, M.A. (2017). Enhancement of yield point at high pressure high temperature wells by using polymer nanocomposites based on ZnO & CaCO3 nanoparticles. Egyptian Journal of Petroleum, 26, 33-40. http://dx.doi.org/10.1016/j.ejpe.2016.03.002
Pujiastuti, C., Y Ngatilah., M Septianto., & A Tantyono. (2020). Reaction Kinetics The Formation of Calcium Sulfate From Cow Bone And Sulfuric Acid In Batch. Journal of Physics: Conference Series, 1569, 042053. https://doi.org/10.1088/1742-6596/1569/4/042053
Saravanan, S., Mohana, M.K., Navaneethan, M., Ponnusamy, S., & Muthamizhchelvan, C. (2019). Synthesis and photocatalytic activity of Gd doped ZnO nanoparticles for enhanced degradation of methylene blue under visible light. Materials Science in Semiconductor Processing, 103, 104622. https://doi.org/10.1016/j.mssp.2019.104622
Sonal, S., Saurabh, D & Shukla, A.K. (2018). Self-assembly of the Ag deposited ZnO/carbon nanospheres: A resourceful photocatalyst for efficient photocatalytic degradation of methylene blue dye in water. Advanced Powder Technology, 12 (29), 3483-3492. https://doi.org/10.1016/j.apt.2018.09.031
Selvaraj, P., Kalimuthu, A., Manjunathan, N., Palaniswamy, K., Kathirvel, D., Rajamani, R., & V. Bhuvaneshwari., Devaraj, B. (2020). Synthesis and characterization of chitosan/zinc oxide nanocomposite for antibacterial activity onto cotton fabrics and dye degradation applications. International Journal of Biological Macromolecules, 164, 2779-2787. https://doi.org/10.1016/j.ijbiomac.2020.08.047
Selvi, N., Sankar, S., & Dinakaran, K. (2015). Effect of shell ZnO on the structure and optical property of TiO2 core@shell hybrid nanoparticles, J. Mater. Sci: Mater. Electron. 26, 2271-2277. https://doi.org/10.1007/s10854-015-2680-5
Trandafilovi´c, V., Jovanovi´c, D.J., Zhang, X., Ptasi´nska, S., & Drami´canin, M.D. (2017). Enhanced photocatalytic degradation of methylene blue and methylorange by ZnO:Eu nanoparticles. Applied Catalysis B: Environmental, 17, 740-752. http://dx.doi.org/10.1016/j.apcatb.2016.10.063
Vijayaprasath, G., Murugan, R., Asaithambi, S., Babu, G.A, Sakthivel, P., Mahalingam, T., Hayakawa, Y., & Ravi, G. (2016). Structural characterization and magnetic properties of Co co-doped Ni/ZnO nanoparticles. 122, 122. https://doi.org/10.1007/s00339-016-9655-0
Xiaoqing, C., Zhansheng, W., Dandan, L., & Zhenzhen, G. (2017). Preparation of ZnO Photocatalyst for the Efficient and Rapid Photocatalytic Degradation of Azo Dyes. J Mater Sci: Mater Electron, 12(1), 143. https://doi.org/10.1007/s10854-015-2680-5
Zahra, V., & Vahid, J. (2020). Synthesis, characterization and photocatalytic activity of ZSM-5/ZnO nanocomposite modified by Ag nanoparticles for methyl orange degradation. Journal of Photochemistry & Photobiology A: Chemistry, 388, 112064. https://doi.org/10.1016/j.jphotochem.2019.112064
DOI: http://dx.doi.org/10.20527/flux.v19i1.11824
Article Metrics
Abstract view : 843 timesPDF (Bahasa Indonesia) - 892 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Jurnal Fisika Flux: Jurnal Ilmiah Fisika FMIPA Universitas Lambung Mangkurat
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Association with:
Indexed by:
Jurnal Fisika FLux: Jurnal Ilmiah FMIPA Universitas Lambung Mangkurat is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.