Coconut (Cocos nucifera L.) Coir Briquettes as an Alternative Fuel Based on Local Natural Resources

Yelfira Sari, Putri Ade Rahma Yulis

Abstract


One of the practical and efficient products of biomass processing is briquettes. Briquettes are densified products in the form of cubic, prism, or cylindrical shapes. One of the biomass produced from abundant agricultural waste in Riau Province is coconut coir. This is because Riau Province is one of the largest coconut-producing regions in Indonesia. The utilization of coconut coir waste is currently still limited to crafts, fuel, and planting media. This study aims to produce briquettes from a waste of old coconut coir and young coconut coir with the stages of the research process including cleaning, drying, grinding, adding adhesive, and densification. The resulting briquettes were then subjected to laboratory tests to determine the physical characteristics of the briquettes based on SNI No. 1/6235/2000 and structural characteristics using SEM and TG/DTG. The results showed that laboratory tests for old coconut coir briquettes and young coconut coir based on water content were 28.11% and 29.72%; based on ash content are 1.59% and 2.21%; based on the carbon content are 25.10% and 24.94%, and the heating value is 3019.54 cal/g and 3137.03 cal/g. For SEM analysis, the surface morphology of the briquettes looked smooth and there was no fragmentation indicating that the biomass was perfectly bonded with the binder used. Meanwhile, in the TG/DTG analysis, the results showed that there had been a mass decrease of around 90% for old coconut coir briquettes and 78% for young coconut coir briquettes at a temperature of around 450oC

Keywords


biobriquettes; biomass waste; coconut coir; thermal analysis

References


Afra, E., Abyaz, A., & Saraeyan, A. (2021). The production of bagasse biofuel briquettes and the evaluation of natural binders (LNFC, NFC, and lignin) effects on their technical parameters. Journal of Cleaner Production, 278, https://doi.org/10.1016/j.jclepro.2020.123543.

Ahmad, M. S., Mehmood, M. A., Ye, G., Al-Ayed, O. S., Ibrahim, M., Rashid, U., …, Nehdi, I. A. (2017). Thermogravimetric analyses revealed the bioenergy potential of Eulaliopsis binata, Journal of Thermal Analysis and Calorimetry, DOI 10.1007/s10973-017-6398-x

Ajimotokan, H. A., Ibitoye, S. E., Odusote, J. K., Adesoye, O. A., & Omoniyi P. O. (2019). Physico-mechanical properties of composite briquettes from corncob and rice husk. Journal of Bioresources and Bioproduct, 4 (3), 159-165. DOI: 10.12162/jbb.v4i3.004

Akolgo, G. A., Essandoh, E. O., Gyamfi S., Atta-Darkwa, T., Kummi, N., & de Freitas Maia, C. M. B. (2018). The potential of a dual purpose improved cookstove for low income earners in Ghana–Improved cooking methods and biochar production, Renewable Sustainable Energy Review, 82, 369-379 http://dx.doi.org/10.1016/j.rser.2017.09.044

Akolgo, G. A., Awafo, E. A., Essandoh, E. O., Owusu, P.A., Uba, F., & Adu-Poku, K.A. (2021). Assessment of the potential of charred briquettes of sawdust, rice and coconut husks: Using water boiling and user acceptability tests, Scientific African, 12, 1-8. https://doi.org/10.1016/j.sciaf.2021.e00789

Anuchi, S. O., Campbell, K. L. S., & Hallett, J. P. (2022). Efective pretreatment of lignin rich coconut wastes using a low cost ionic liquid, Scientific Reports, 12, 6108, https://doi.org/10.1038/s41598-022-09629-4

Ba, M., Ndiaye, L., Youm, I. (2019). Thermochemical Characterization of Casamance Biomass Residues for Production of Combustibles Briquettes, Journal of Physical Chemistry, 9 (3). DOI: 10.4236/ojpc.2019.93009

Dhyani, V., & Bhaskar, T. (2018). A comprehensive review on the pyrolysis of lignocellulosic biomass, Renewable Energy, 129, Part B, 695-716, https://doi.org/10.1016/j.renene.2017.04.035

Grover, P. D., & Mishra, S. K. (1996). Biomass briquetting: Technology and practices, Regional Wood Energy Development Programme in Asia, Bangkok.

Inegbedion, F., & Ikpoza, E. (2022). Estimation of the moisture content, volatile matter, ash content, fixed carbon and calorific values of rice husk briquettes, Proceedings of the International Conference on Industrial Engineering and Operations Management, Nsukka, Nigeria.

Iskandar, N., Nugroho, S., & Feliyana, M.F., (2019). Uji kualitas produk briket arang tempurung kelapa berdasarkan standar mutu SNI, Momentum, 15 (2), 103-108.

Magnago, R. F., Costa, S. C., de Assuncao Ezirio, M. J., de Godoy Saciloto, V., Parma, G. O. C., Gasparotto, E. S., …, Barcelos R. L. (2020). Briquettes of citrus peel and rice husk. J Journal of Cleaner Production, 276, 123820 https://doi.org/10.1016/j.jclepro.2020.123820.

Mardawati, E., Ramadhan, A. K., Kusnayat, A., Ardiansah, I., & Fitriana, A. N. (2022). Biobriquette: a mixture of palm kernel shell and coconut shell, an Indonesian study case., Ecology, Environment and Conservation, 28 (3) 1611-1618 http://doi.org/10.53550/EEC.2022.v28i03.070

Nagarajan, J., & Prakash, L. (2021). Preparation and characterization of biomass briquettes using sugarcane bagasse, corncob and rice husk, Materials Today: Proceedings, 47 (14), 4194–4198 https://doi.org/10.1016/j.matpr.2021.04.457

Obeng, G. Y., Amoah, D. Y., Opoku, R., Sekyere, C. K. K., Adjei, E. A., & Mensah, E. (2020). Coconut wastes as bioresource for sustainable energy: quantifying wastes, calorific values and emissions in Ghana, Energies, 13 (9). https://doi.org/10.3390/en13092178

Rizki, M., Mustaqilla, S., Zuhra, Rinaldi, W., & Mukhriza, T. (2022). The effect of adhesive types of damar and pine resin for biobricket manufacturing from sugarcane bagasse, Journal of Applied Technology, 1 (1), 35-42

Saeed, A. A. H., Harun, N. Y., Bilad, M. R., Afzal, M. T., Parvez, A. M., Roslan, F. A. S., …, Afolabi, H. K. (2021). Moisture content impact on properties of briquette produced from rice husk waste, Sustainability, 13, 3069. https://doi.org/10.3390/su13063069

Senila, L., Tenu, I., Carlescu, P., Scurtu, D. A., Kovacs, E., Senila, M., …, Roman, C. (2022). Characterization of biobriquettes produced from vineyard wastes as a solid biofuel resource, Agriculture, 12 (3), 341. https://doi.org/10.3390/agriculture12030341

Soponpongpipat, N., & Sae-Ueng, U. (2015). The effect of biomass bulk arrangements on the decomposition pathways in the torrefaction process, Renewable Energy, 81, 679–684 https://doi.org/10.1016/j.renene.2015.03.060

Volli, V., Gollakota, A. R. K., & Shu, C. (2021). Comparative studies on thermochemical behavior and kinetics of lignocellulosic biomass residues using TG-FTIR and Py-GC/MS, Science of the Total Environment, doi: 10.1016/j.scitotenv.2021.148392.

Waweru, J., & Chirchir D. K., (2017). Effect of the briquette sizes and moisture contents on combustion characteristics of composite briquettes, International Journal of Innovative Science, Engineering & Technology, 4 (7), 102-111

Zhao, Y., Zhang, Y., Zhang, H., Wang, Q., Guo, Y. (2015). Structural characterization of carbonized briquette obtained from anthracite powder, Journal of Analytical and Applied Pyrolysis, http://dx.doi.org/10.1016/j.jaap.2015.01.009




DOI: http://dx.doi.org/10.20527/flux.v20i2.15337

Article Metrics

Abstract view : 628 times
PDF (Bahasa Indonesia) - 564 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Jurnal Fisika Flux: Jurnal Ilmiah Fisika FMIPA Universitas Lambung Mangkurat

Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Association with:

Physical Society of Indonesia

Indexed by:

 

Creative Commons License
Jurnal Fisika FLux: Jurnal Ilmiah FMIPA Universitas Lambung Mangkurat is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.