Identification of Pneumonia on Thorax X-Ray Image Using the Convolutional Neural Network Method Model VGG16

Meita Ananda Pramesti, Yudha Arman, . Hasanuddin

Abstract


Pneumonia is an inflammation of the lung parenkime caused by bacteria, viruses, and other infections. Generally, the detection of pneumonia can be done by analyzing the x-ray image of the thorax after the reported symptoms and recommendations given by the physician. Previous studies said that Convolutional Neural Networks (CNN), part of Deep learning technology, can be used to analyze x-ray images. It also reported that this method could reduce independent parameters and handle the deformation of input images, such as translation, rotation, and scale. In this study, we report the implementation of CNN model VGG16 with varying epochs and pixels on chest x-ray images to classify pneumonia. The data used are 4000 x-ray images of the thorax taken from the Mendeley website. Final classification processes were done by using the softmax activation function. The results were tested using 20 batch sizes based on 2 image treatment parameters, namely resize and epoch. We reported that the higher image reduction size can increase the average calculation’s accuracy. It is found that the highest accuracy (87,54%) is obtained from the resizing of 300×300 pixels. The lowest average accuracy, 79.61%, is shown at a resize size of 100×100 pixels. The highest accuracy (94.39%) for the epoch variant on the resized image of 300×300 pixels is obtained on the 30th epoch

Keywords


convolutional neural network; epoch; pneumonia; resize; x-ray image

References


Andika, L.A., Pratiwi, H., and Handajani, S.S., 2019. Klasifikasi Penyakit Pneumonia Menggunakan Metode Convolutional Neural Network Dengan Optimasi Adaptive Momentum. Indonesian Journal of Statistics and Its Applications, 3 (3), 331–340.

Budihardjo, S.N. and Suryawan, I.W.B., 2020. Faktor-faktor resiko kejadian pneumonia pada pasien pneumonia usia 12-59 bulan di RSUD Wangaya. Intisari Sains Medis, 11 (1), 398–404.

Fadlia, N. and Kosasih, R., 2019. Klasifikasi Jenis Kendaraan Menggunakan Metode Convolutional Neural Network (Cnn). Jurnal Ilmiah Teknologi dan Rekayasa, 24 (3), 207–215.

Hariyani, Y.S., Hadiyoso, S., and Siadari, T.S., 2020. Deteksi Penyakit Covid-19 Berdasarkan Citra X-Ray Menggunakan Deep Residual Network. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 8 (2), 443.

Irawan, R., Reviono, and Harsini, 2019. Respirologi Indonesia. Journal of The Indonesian Society of Respirology, Vol. 39 (1), 44–53.

Maysanjaya, I.M.D., 2020. Klasifikasi Pneumonia pada Citra X-rays Paru-paru dengan Convolutional Neural Network. Jurnal Nasional Teknik Elektro dan Teknologi Informasi, 9 (2), 190–195.

Monita, O., Yani, F.F., and Lestari, Y., 2015. Profil Pasien Pneumonia Komunitas di Bagian Anak RSUP DR. M. Djamil Padang Sumatera Barat. Jurnal Kesehatan Andalas, 4 (1), 218–226.

Santos, A.M., Pereira, B.B., Seixas, J.M., Mello, F.C.Q., and Kritski, A.L., 2007. Neural Networks: An Application for Predicting Smear Negative Pulmonary Tuberculosis. Advances in Statistical Methods for the Health Sciences, 275–287.

Suartika E. P, I Wayan, Wijaya Arya Yudhi, S.R., 2016. Klasifikasi Citra Menggunakan Convolutional Neural Network (Cnn) Pada Caltech 101. Jurnal Teknik ITS, 5 (1), 76.




DOI: http://dx.doi.org/10.20527/flux.v21i1.15595

Article Metrics

Abstract view : 258 times
PDF (Bahasa Indonesia) - 183 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Jurnal Fisika Flux: Jurnal Ilmiah Fisika FMIPA Universitas Lambung Mangkurat

Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Association with:

Physical Society of Indonesia

Indexed by:

 

Creative Commons License
Jurnal Fisika FLux: Jurnal Ilmiah FMIPA Universitas Lambung Mangkurat is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.