Analysis of a Cylinder Size Effect on the Fluid Flow Profile Around the Cylinder with OpenFOAM

Kania Nugraha Putri, Rida SN Mahmudah

Abstract


Planning and analysis of infrastructure involving cylindrical shapes such as bridge platform pillars and offshore sea piping systems are needed to ensure user safety. This study aims to determine the effect of variations in cylinder diameter on fluid flow profiles with OpenFOAM software in laminar conditions with Reynolds numbers 60, 100, and 200. The computational domain used is a rectangle with a length of 32D and a width of 20D, where D is the cylinder diameter, which in this study is varied by D, 2D, and 4D. We placed the cylinder at a distance of 8D in the direction of the x-axis and a length of 10D in the direction of the y-axis. The simulation results show that variations in cylinder diameter affect the fluid flow profile, and the drag coefficient increases with increasing variations in cylinder diameter. In addition, variations in diameter also affect the formation of vortex structures as the Reynolds number increases.

Keywords


Drag Coefficient; Fluid Flow around the Cylinder; OpenFOAM; Vortex

References


Abeele, F. Van Den, & Voorde, J. Vande. (2011). 6th Pipeline Technology Conference 2011 Stability of Offshore Pipelines in Close Proximity to the Seabed.

Asrori, S. T., Susilo, S. H., Eko Yudiyanto, S. T., Gumono, S. T., & MT, M. (2021). Mekanika fluida dasar. Penerbit Qiara Media.

Boudet, J. (2011). Finite volume methods. Computational Fluid Dynamics, M(6), 1–24. https://doi.org/10.1007/978-3-319-99693-6_4

Çengel, Y. A., & Cimbala, J. M. (2010). Fluid Mechanics: Fundamentals and Applications. McGraw-Hill Higher Education.

Courant, R., Friedrichs, K., & Lewy, H. (1967). On the partial difference equations of mathematical physics. IBM Journal of Research and Development, 11(2), 215–234.

Daubert, C. R. (2010). Reynolds Number. Encyclopedia of Agricultural, Food, and Biological Engineering, Second Edition, 1469–1472. https://doi.org/10.1081/e-eafe2-120045926

Ghurri, A. (2014). Dasar-Dasar Mekanika Fluida. Dasar-Dasar Mekanika Fluida, 1. https://simdos.unud.ac.id/uploads/file_pendidikan_1_dir/2e54aeb12421ee1a17c35e14ba49cb23.pdf

Gloub, G. H., & Van Loan, C. F. (1996). Matrix computations. Johns Hopkins Universtiy Press, 3rd Edtion.

Greenshields, C. J. (2018). OpenFOAM–The OpenFOAM Foundation–User Guide.

Hakam, A. (2015). Simulasi Numerik Aliran Fluida Di Sekitar Dua Silinder Sirkuler Side-By-Side Numerical Simulation of Fluid Flow Around Two Circular Cylinders Side-By-Side.

Hakam, A. (2018). Simulasi Numerik Aliran Fluida Di Sekitar Silinder Sirkular Dan Tiga Kendali Pasif. Institut Teknologi Sepuluh Nopember.

Hapsoro, C. A., & Srigutomo, W. (2018). 2-D Fluid Surface Flow Modeling using Finite-Difference Method Pemodelan Aliran Fluida 2-D Pada Kasus Aliran Permukaan 2-D Fluid Surface Flow Modeling using Finite-Difference Method. August 2013.

Imron, C., Hakam, A., Widodo, B., & Yuwono, T. Y. (2020). Numerical Simulation of Fluid Flow Around Circular Cylinder and Three Passive Controls to Reduce Drag Coefficient at Re=500. International Journal of Computing Science and Applied Mathematics, 6(1), 13. https://doi.org/10.12962/j24775401.v6i1.5331

Katz, V. J. (1979). The History of Stokes’ Theorem. Mathematics Magazine, 52(3), 146–156. https://doi.org/10.1080/0025570x.1979.11976770

Mathupriya, P., Chan, L., Hasini, H., & Ooi, A. (2018). Numerical study of flow characteristics around confined cylinder using openFOAM. International Journal of Engineering and Technology(UAE), 7(4), 617–623. https://doi.org/10.14419/ijet.v7i4.35.22925

Nakayama, Y. (2018). Flow in Pipes. Introduction to Fluid Mechanics, 135–161. https://doi.org/10.1016/B978-0-08-102437-9.00007-3

Qu, L., Norberg, C., Davidson, L., Peng, S. H., & Wang, F. (2013). Quantitative numerical analysis of flow past a circular cylinder at reynolds number between 50 and 200. Journal of Fluids and Structures, 39, 347–370. https://doi.org/10.1016/j.jfluidstructs.2013.02.007

Ramadhany, P. (2018). Komputasi Dinamika Fluida pada T - Mikro Mixer. Jurnal Rekayasa Proses, 11(2), 43. https://doi.org/10.22146/jrekpros.26933

Sato, M., & Kobayashi, T. (2012). A fundamental study of the flow past a circular cylinder using Abaqus/CFD. 2012 SIMULIA Community Conference.

Stevens, K. G., Peterson, V. L., & Kutler, P. (2009). Introduction to Computational Fluid Dynamics. In Handbook of Fluid Dynamics and Fluid Machinery: Vol. M. https://doi.org/10.1002/9780470172643.ch18

Tan, J. (2010). A study of solving Navier-Stokes equations with a finite volume method based on polygonal unstructured grids and the computational analysis of ground vehicle aerodynamics. Texas Tech University.

Vieira, D. (2015). Modeling Landscape Evolution Due to Tillage: Model Development. September 2009. https://doi.org/10.13031/2013.29139

Vu, H. C., Ahn, J., & Hwang, J. H. (2016). Numerical simulation of flow past two circular cylinders in tandem and side-by-side arrangement at low Reynolds numbers. KSCE Journal of Civil Engineering, 20(4), 1594–1604. https://doi.org/10.1007/s12205-015-0602-y

Yuce, M. I., & Kareem, D. A. (2016). A numerical analysis of fluid flow around circular and square cylinders. Journal - American Water Works Association, 108(10), E546–E554. https://doi.org/10.5942/jawwa.2016.108.0141




DOI: http://dx.doi.org/10.20527/flux.v21i1.16555

Article Metrics

Abstract view : 337 times
PDF (Bahasa Indonesia) - 141 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Jurnal Fisika Flux: Jurnal Ilmiah Fisika FMIPA Universitas Lambung Mangkurat

Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Association with:

Physical Society of Indonesia

Indexed by:

 

Creative Commons License
Jurnal Fisika FLux: Jurnal Ilmiah FMIPA Universitas Lambung Mangkurat is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.