An Internet of Things (IoT)-based Microclimate Parameter Measurement Tool (Temperature, Humidity, and Sunlight Intensity) for Coastal Areas

Ahmad Zarkasi, Kholis Nurhanafi, Syahrir Syahrir

Abstract


Climate parameters such as temperature, humidity, and solar light intensity can affect various things in the environment and its components such as vegetation, animals, and humans. In this research, an internet of things (IoT)-based climate parameter measurement tool has been created. The use of IoT systems offers flexibility and ease of access for observers to conduct monitoring. The designed measuring instrument has been tested and compared with a standardized measuring instrument, namely the Mastech MS6300 Environment Multitester. The test results show accuracy values of 97.1%, 95.1%, and 87.2% for temperature, humidity, and sunlight intensity measurements, respectively. The results of the measuring instrument design are implemented in coastal areas (beaches). From the results obtained, the three parameters measured tend to be stable in the morning, afternoon, and evening. Meanwhile, during the afternoon the measured climate parameters are quite fluctuating. In general, the designed measuring instrument has been able to work well and is feasible to be implemented directly.

Keywords


micro-climate, IoT, humidity, light intensity, temperature

References


Astutik, Y., Murad, Putra, G. M. D., & Setiawati, D. A. (2019). Remote monitoring systems in greenhouse based on NodeMCU ESP8266 microcontroller and Android. AIP Conference Proceedings, 2199. https://doi.org/10.1063/1.5141286

Azhari, Nasution, T. I., Sinaga, S. H., & Sudiati. (2023). Design of Monitoring System Temperature And Humidity Using DHT22 Sensor and NRF24L01 Based on Arduino. Journal of Physics: Conference Series, 2421(1). https://doi.org/10.1088/1742-6596/2421/1/012018

Bosh Sensortec. (2015). BMP280 - Digital Pressure Sensor: Data sheet.

Desnanjaya, I. G. M. N., Ariana, A. A. G. B., Nugraha, I. M. A., Wiguna, I. K. A. G., & Sumaharja, I. M. U. (2022). Room Monitoring Uses ESP-12E Based DHT22 and BH1750 Sensors. Journal of Robotics and Control (JRC), 3(2), 205–211. https://doi.org/10.18196/jrc.v3i2.11023

Fahim, M., El Mhouti, A., Boudaa, T., & Jakimi, A. (2023). Modeling and implementation of a low-cost IoT-smart weather monitoring station and air quality assessment based on fuzzy inference model and MQTT protocol. Modeling Earth Systems and Environment, 9(4), 4085–4102. https://doi.org/10.1007/s40808-023-01701-w

Fatimatuzzahra, F., Didik, L. A., & Bahtiar, B. (2020). Analisis Akurasi Sistem Sensor DHT22 berbasis Arduino terhadap Thermohygrometer Standar. Jurnal Fisika Dan Aplikasinya, 16(1), 33. https://doi.org/10.12962/j24604682.v16i1.5717

Harjadi, B. (2017). The role of Casuarina Rquisetifolia on Micro Climate Improvement of Sandy Beach Land at Kebumen. Journal of Watershed Management Research, 1(2), 73–81. https://doi.org/10.20886/jppdas.2017.1.2.73-81

Ibrahim, O. A., Oligeri, G., & Di Petrio, R. (2023). A data set of barometric readings for enhancing security and privacy of IoT. Data in Brief, 51.

Jin, J., De Sloover, L., Verbeurgt, J., Stal, C., Deruyter, G., Montreuil, A. L., De Maeyer, P., & De Wulf, A. (2020). Measuring surface moisture on a sandy beach based on corrected intensity data of a mobile terrestrial LiDAR. Remote Sensing, 12(2). https://doi.org/10.3390/rs12020209

Kamsurya, M. Y., Ala, A., Musa, Y., & Rafiuddin. (2023). The Effect Micro Climate on The Flowering Phenology of Forest Clove Plants (Zyzygium obtusifolium L). IOP Conference Series: Earth and Environmental Science, 1134(1), 012031. https://doi.org/10.1088/1755-1315/1134/1/012031

Kumar, M. K., Karuna, G., Ram Kumar, R. P., Gattamaneni, S., & Harshini Lakshmi Priya, P. (2023). Smart Cultivation System using IoT. E3S Web of Conferences, 391. https://doi.org/10.1051/e3sconf/202339101160

Kumar, P., Chandra, R., Bansal, C., Kalyanaraman, S., Ganu, T., & Grant, M. (2021). Micro-climate Prediction - Multi Scale Encoder-decoder based Deep Learning Framework. Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 3128–3138. https://doi.org/10.1145/3447548.3467173

Ouellet, V., Toledo, I. M., Dado-Senn, B., Dahl, G. E., & Laporta, J. (2021). Critical Temperature-Humidity Index Thresholds for Dry Cows in a Subtropical Climate. Frontiers in Animal Science, 2. https://doi.org/10.3389/fanim.2021.706636

Prihandrijanti, M., & Azzizi, V. T. (2023). Geospatial and Temporal Analysis of Temperature-Humidity Index (THI) as Climate Mitigation Tool in Glamping Site in Cimahi North, West Java, Indonesia. IOP Conference Series: Earth and Environmental Science, 1264(1). https://doi.org/10.1088/1755-1315/1264/1/012024

Qian WU, & Hyun-Kil Jo. (2015). A Study on Ecotect Application of Local Climate at Residential Area in Chuncheon, Korea. Journal of Environmental Engineering and Landscape Management, 23(2), 94–101. https://doi.org/http://dx.doi.org/10.3846/16486897.2014.980264

Rusdayanti, N., Karuniasa, M., & Nasrullah, N. (2021). Thermal comfort assessment over the past two decades in different landscape areas within Palembang City. IOP Conference Series: Earth and Environmental Science, 724(1). https://doi.org/10.1088/1755-1315/724/1/012010

Rutty, M., & Scott, D. (2014). Thermal range of coastal tourism resort microclimates. Tourism Geographies, 16(3), 346–363. https://doi.org/10.1080/14616688.2014.932833

Sari, I. P., Gunawan, A. A. N., Wibawa, I. M. S., Putra, I. K., & Yusuf, M. (2023). Design of Radiosonde Based on Arduino Pro Mini Using BME280 Sensor. In Techniques and Innovation in Engineering Research Vol. 5 (pp. 145–157). B P International (a part of SCIENCEDOMAIN International). https://doi.org/10.9734/bpi/taier/v5/18576d

Wardani, I. K., Ichniarsyah, A. N., Telaumbanua, M., Priyonggo, B., Fil’Aini, R., Mufidah, Z., & Dewangga, D. A. (2023). The feasibility study: Accuracy and precision of DHT 22 in measuring the temperature and humidity in the greenhouse. IOP Conference Series: Earth and Environmental Science, 1230(1). https://doi.org/10.1088/1755-1315/1230/1/012146

Zin Naing, Z., Tin Nyo, T., & Hla Htoo, H. (2020). Data Acquisition of Solar Radiation and Ultra-Violet (UV) Intensity. J. Myanmar Acad. Arts Sci, 2.




DOI: http://dx.doi.org/10.20527/flux.v21i1.17929

Article Metrics

Abstract view : 260 times
PDF (Bahasa Indonesia) - 370 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Jurnal Fisika Flux: Jurnal Ilmiah Fisika FMIPA Universitas Lambung Mangkurat

Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Association with:

Physical Society of Indonesia

Indexed by:

 

Creative Commons License
Jurnal Fisika FLux: Jurnal Ilmiah FMIPA Universitas Lambung Mangkurat is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.