Morphological Study of Surface Magnetic Minerals, Case Study of North Banjarmasin Settlement Areas

Sudarningsih Sudarningsih, Fahruddin Fahruddin, Tetti Novalina Manik, Dzikri Dzikri

Abstract


We have conducted research to identify the morphology of magnetic minerals from the land in the Banjarmasin regional settlement area. We used scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM EDS) on the soil sample to look at the shape of its magnetic minerals. In nature, magnetic minerals can indicate the presence of heavy metals. The shape of a magnetic mineral can reveal its origin in either the litogenic or anthropogenic processes. There were mostly pseudo-single domain grains (3.29–10 m) and multidomain grains (> 10–134.69 m) in the study area. The multidomain grains came in the shapes of sperules, irregulars, angles, and prisms. These results indicate that in the residential land location there are magnetic mineral grains originating from litogenic and anthropogenic processes.


Keywords


anthropogenic; EDS; magnetite; multidomain; SEM

Full Text:

PDF

References


Ananthapadmanabha, A. L., Shankar, R., & Sandeep, K. (2014). Rock magnetic properties of lateritic soil profiles from southern India: Evidence for pedogenic processes. Journal of Applied Geophysics, 111, 203–210. https://doi.org/10.1016/j.jappgeo.2014.10.009

Ayoubi, S., & Adman, V. (2019). Iron Mineralogy and Magnetic Susceptibility of Soils Developed on Various Rocks in Western Iran. Clays and Clay Minerals, 67(3), 217–227. https://doi.org/10.1007/s42860-019-00020-5

Barrios, M. dos R., Marques Junior, J., Matias, S. S. R., Panosso, A. R., Siqueira, D. S., & Scala Junior, N. (2017). Suscetibilidade magnética como indicador de qualidade do solo em áreas sob cultivo de cana-de-açúcar. Revista Caatinga, 30(2), 287–295. https://doi.org/10.1590/1983-21252017v30n203rc

César de Mello, D., Demattê, J. A. M., Silvero, N. E. Q., Di Raimo, L. A. D. L., Poppiel, R. R., Mello, F. A. O., … Rizzo, R. (2020). Soil magnetic susceptibility and its relationship with naturally occurring processes and soil attributes in pedosphere, in a tropical environment. Geoderma, 372(March), 114364. https://doi.org/10.1016/j.geoderma.2020.114364

Chai, Y., Guo, J., Chai, S., Cai, J., Xue, L., & Zhang, Q. (2015). Source identification of eight heavy metals in grassland soils by multivariate analysis from the Baicheng–Songyuan area, Jilin Province, Northeast China. Chemosphere, 134, 67–75. https://doi.org/https://doi.org/10.1016/j.chemosphere.2015.04.008

Chris Perry and Kevin Taylor. (2006). Environmental Sedimentology (C. Perry & K. Taylor, Eds.). Oxford: Blackwell Publishing.

Evans, G., Howarth, R. J., & Nombela, M. A. (2003). Metals in the sediments of Ensenada de San Simón (inner Rı́a de Vigo), Galicia, NW Spain. Applied Geochemistry, 18(7), 973–996. https://doi.org/https://doi.org/10.1016/S0883-2927(02)00203-2

Fitriani, D., Utami, W., Kirana, K. H., Agustine, E., & Zulaikah, S. (2021). Magnetic Signatures on River Sediments and Agricultural Soils as Proxy Indicators of Anthropogenic-derived Pollution (Case Study: Cikijing River, Rancaekek, West Java). Jurnal Penelitian Pendidikan IPA, 7(3), 381–387. https://doi.org/10.29303/jppipa.v7i3.697

Frančišković-Bilinski, S., Bilinski, H., Scholger, R., Tomašić, N., & Maldini, K. (2014). Magnetic spherules in sediments of the karstic Dobra River (Croatia). Journal of Soils and Sediments, 14(3), 600–614. https://doi.org/10.1007/s11368-013-0808-x

Franke, C., von Dobeneck, T., Drury, M. R., Meeldijk, J. D., & Dekkers, M. J. (2007). Magnetic petrology of equatorial Atlantic sediments: Electron microscopy results and their implications for environmental magnetic interpretation. Paleoceanography, 22(4), 1–23. https://doi.org/10.1029/2007PA001442

Goddu, S. R., Appel, E., Jordanova, D., & Wehland, F. (2004). Magnetic properties of road dust from Visakhapatnam ( India )–– relationship to industrial pollution and road traffic. 29, 985–995. https://doi.org/10.1016/j.pce.2004.02.002

Gu, Y. G., Gao, Y. P., & Lin, Q. (2016). Contamination, bioaccessibility and human health risk of heavy metals in exposed-lawn soils from 28 urban parks in southern China’s largest city, Guangzhou. Applied Geochemistry, 67, 52–58. https://doi.org/10.1016/j.apgeochem.2016.02.004

Horng, C., Huh, C., Chen, K., & Huang, P. (2009). Air pollution history elucidated from anthropogenic spherules and their magnetic signatures in marine sediments offshore of Southwestern Taiwan. Journal of Marine Systems, 76(4), 468–478. https://doi.org/10.1016/j.jmarsys.2007.09.014

Jordanova, D., Hoffmann, V., & Fehr, K. T. (2004). Mineral magnetic characterization of anthropogenic magnetic phases in the Danube river sediments (Bulgarian part). Earth and Planetary Science Letters, 221(1–4), 71–89. https://doi.org/10.1016/S0012-821X(04)00074-3

Jordanova, N., Jordanova, D., Liu, Q., Hu, P., Petrov, P., & Petrovský, E. (2013). Soil formation and mineralogy of a Rhodic Luvisol — insights from magnetic and geochemical studies. Global and Planetary Change, 110, 397–413. https://doi.org/10.1016/j.gloplacha.2013.08.020

Kirana, K. H., Ghazali, M., Septiana, L. A. E. S., Fitriani, D., Agustine, E., Fajar, S. J., & Nugraha, M. G. (2020). Karakterisasi Mineral Magnetik Sedimen Sungai Citarum Hilir Melalui Analisa Sifat Magnetik, Mineralogi serta Morfologi Magnetik. Positron, 10(2), 52. https://doi.org/10.26418/positron.v10i2.42143

Kristian, E., Bijaksana, S., Srigutomo, W., & Kardena, E. (2010). Scanning electron microscopy and magnetic characterization of iron oxides in solid waste landfill leachate. Journal of Hazardous Materials, 179(1–3), 701–708. https://doi.org/10.1016/j.jhazmat.2010.03.058

Lee, S., Kim, S., Kim, H., Seo, Y., Ha, Y., Kim, H., … Yu, Y. (2020). Tracing of traffic-related pollution using magnetic properties of topsoils in Daejeon, Korea. Environmental Earth Sciences, 79, 485. https://doi.org/10.1007/s12665-020-09223-9

Lehndorff, E., Urbat, M., & Schwark, L. (2006). Accumulation histories of magnetic particles on pine needles as function of air quality. Atmospheric Environment, 40(36), 7082–7096. https://doi.org/https://doi.org/10.1016/j.atmosenv.2006.06.008

Li, W., Mu, G., Zhang, W., Lin, Y., Zhang, D., & Song, H. (2019). Formation of greigite (Fe 3 S 4 ) in the sediments of saline lake Lop Nur, northwest China, and its implications for paleo-environmental change during the last 8400 years. Journal of Asian Earth Sciences, 174(November 2018), 99–108. https://doi.org/10.1016/j.jseaes.2018.11.021

Liaghati, T., Preda, M., & Cox, M. (2004). Heavy metal distribution and controlling factors within coastal plain sediments, Bells Creek catchment, southeast Queensland, Australia. Environment International, 29(7), 935–948. https://doi.org/10.1016/S0160-4120(03)00060-6

Madi. (2022). Scanning Electron Microscope (SEM) Energy Despersive X-Ray(EDX). Yogyakarta: Laboratorium Penelitian Dan Pengujian Terpadu Universitas Gajah Mada.

Magiera, T., Mendakiewicz, M., Szuszkiewicz, M., Jabłońska, M., & Chróst, L. (2016). Technogenic magnetic particles in soils as evidence of historical mining and smelting activity: A case of the Brynica River Valley, Poland. Science of The Total Environment, 566–567, 536–551. https://doi.org/https://doi.org/10.1016/j.scitotenv.2016.05.126

Maity, R., Venkateshwarlu, M., Mondal, S., Kapawar, M. R., Gain, D., & Paul, P. (2021). Magnetic and microscopic characterization of anthropogenically produced magnetic particles: a proxy for environmental pollution. International Journal of Environmental Science and Technology, 18(7), 1793–1808. https://doi.org/10.1007/s13762-020-02902-x

Novala, G. C., Sudarningsih, Kirana, K. H., Fajar, S. J., Mariyanto, & Bijaksana, S. (2019). Testing the effectiveness of mechanical magnetic extraction in riverine and lacustrine sediments. Journal of Physics: Conference Series, 1204(1). https://doi.org/10.1088/1742-6596/1204/1/012085

Rachwał, M., Kardel, K., Magiera, T., & Bens, O. (2017). Application of magnetic susceptibility in assessment of heavy metal contamination of Saxonian soil (Germany) caused by industrial dust deposition. Geoderma, 295, 10–21. https://doi.org/10.1016/j.geoderma.2017.02.007

Sikumbang, N., & Heryanto, R. (1994). Peta Geologi Lembar Banjarmasin, Skala 1 : 250.000. Bandung: Pusat Penelitian dan Pengembangan Geologi.

Sudarningsih, S., Pratama, A., Bijaksana, S., Fahruddin, F., Zanuddin, A., Salim, A., … Mariyanto, M. (2023). Magnetic susceptibility and heavy metal contents in sediments of Riam Kiwa, Riam Kanan and Martapura rivers, Kalimantan Selatan province, Indonesia. Heliyon, Vol. 9, p. e16425. https://doi.org/10.1016/j.heliyon.2023.e16425

Thompson, R., & Oldfield, F. (1986). Environmental Magnetism. https://doi.org/10.22498/pages.11.2-3.34

Veneva, L., Hoffmann, V., & Jordanova, D. (2003). Magnetic Susceptibility Screening of Anthropogenic Impact on the Danube River Sediments in Northwestern Bulgaria - Preliminary Results. Studia Geophysica et Geodaetica, 47(2), 403–418. https://doi.org/10.1023/A:1023736111156

Wang, P., Xue, J., & Zhu, Z. (2021). Comparison of heavy metal bioaccessibility between street dust and beach sediment: Particle size effect and environmental magnetism response. Science of the Total Environment, 777, 146081. https://doi.org/10.1016/j.scitotenv.2021.146081

Yunginger, R., Bijaksana, S., Dahrin, D., Zulaikah, S., Hafidz, A., Kirana, K. H., … Fajar, S. J. (2018). Lithogenic and anthropogenic components in surface sediments from lake limboto as shown by magnetic mineral characteristics, trace metals, and REE geochemistry. Geosciences (Switzerland), 8(4). https://doi.org/10.3390/geosciences8040116

Ananthapadmanabha, A. L., Shankar, R., & Sandeep, K. (2014). Rock magnetic properties of lateritic soil profiles from southern India: Evidence for pedogenic processes. Journal of Applied Geophysics, 111, 203–210. https://doi.org/10.1016/j.jappgeo.2014.10.009 Ayoubi, S., & Adman, V. (2019). Iron Mineralogy and Magnetic Susceptibility of Soils Developed on Various Rocks in Western Iran. Clays and Clay Minerals, 67(3), 217–227. https://doi.org/10.1007/s42860-019-00020-5 Barrios, M. dos R., Marques Junior, J., Matias, S. S. R., Panosso, A. R., Siqueira, D. S., & Scala Junior, N. (2017). Suscetibilidade magnética como indicador de qualidade do solo em áreas sob cultivo de cana-de-açúcar. Revista Caatinga, 30(2), 287–295. https://doi.org/10.1590/1983-21252017v30n203rc César de Mello, D., Demattê, J. A. M., Silvero, N. E. Q., Di Raimo, L. A. D. L., Poppiel, R. R., Mello, F. A. O., … Rizzo, R. (2020). Soil magnetic susceptibility and its relationship with naturally occurring processes and soil attributes in pedosphere, in a tropical environment. Geoderma, 372(March), 114364. https://doi.org/10.1016/j.geoderma.2020.114364 Chai, Y., Guo, J., Chai, S., Cai, J., Xue, L., & Zhang, Q. (2015). Source identification of eight heavy metals in grassland soils by multivariate analysis from the Baicheng–Songyuan area, Jilin Province, Northeast China. Chemosphere, 134, 67–75. https://doi.org/https://doi.org/10.1016/j.chemosphere.2015.04.008 Chris Perry and Kevin Taylor. (2006). Environmental Sedimentology (C. Perry & K. Taylor, eds.). Oxford: Blackwell Publishing. Fitriani, D., Utami, W., Kirana, K. H., Agustine, E., & Zulaikah, S. (2021). Magnetic Signatures on River Sediments and Agricultural Soils as Proxy Indicators of Anthropogenic-derived Pollution (Case Study: Cikijing River, Rancaekek, West Java). Jurnal Penelitian Pendidikan IPA, 7(3), 381–387. https://doi.org/10.29303/jppipa.v7i3.697 Frančišković-Bilinski, S., Bilinski, H., Scholger, R., Tomašić, N., & Maldini, K. (2014). Magnetic spherules in sediments of the karstic Dobra River (Croatia). Journal of Soils and Sediments, 14(3), 600–614. https://doi.org/10.1007/s11368-013-0808-x Franke, C., von Dobeneck, T., Drury, M. R., Meeldijk, J. D., & Dekkers, M. J. (2007). Magnetic petrology of equatorial Atlantic sediments: Electron microscopy results and their implications for environmental magnetic interpretation. Paleoceanography, 22(4), 1–23. https://doi.org/10.1029/2007PA001442 Funari, V., Mantovani, L., Vigliotti, L., Tribaudino, M., Dinelli, E., & Braga, R. (2018). Superparamagnetic iron oxides nanoparticles from municipal solid waste incinerators. Science of The Total Environment, 621, 687–696. https://doi.org/https://doi.org/10.1016/j.scitotenv.2017.11.289 Goddu, S. R., Appel, E., Jordanova, D., & Wehland, F. (2004). Magnetic properties of road dust from Visakhapatnam ( India )–– relationship to industrial pollution and road traffic. 29, 985–995. https://doi.org/10.1016/j.pce.2004.02.002 Gu, Y. G., Gao, Y. P., & Lin, Q. (2016). Contamination, bioaccessibility and human health risk of heavy metals in exposed-lawn soils from 28 urban parks in southern China’s largest city, Guangzhou. Applied Geochemistry, 67, 52–58. https://doi.org/10.1016/j.apgeochem.2016.02.004 Horng, C., Huh, C., Chen, K., & Huang, P. (2009). Air pollution history elucidated from anthropogenic spherules and their magnetic signatures in marine sediments offshore of Southwestern Taiwan. Journal of Marine Systems, 76(4), 468–478. https://doi.org/10.1016/j.jmarsys.2007.09.014 Jordanova, D., Hoffmann, V., & Fehr, K. T. (2004). Mineral magnetic characterization of anthropogenic magnetic phases in the Danube river sediments (Bulgarian part). Earth and Planetary Science Letters, 221(1–4), 71–89. https://doi.org/10.1016/S0012-821X(04)00074-3 Kirana, K. H., Ghazali, M., Septiana, L. A. E. S., Fitriani, D., Agustine, E., Fajar, S. J., & Nugraha, M. G. (2020). Karakterisasi Mineral Magnetik Sedimen Sungai Citarum Hilir Melalui Analisa Sifat Magnetik, Mineralogi serta Morfologi Magnetik. Positron, 10(2), 52. https://doi.org/10.26418/positron.v10i2.42143 Kristian, E., Bijaksana, S., Srigutomo, W., & Kardena, E. (2010). Scanning electron microscopy and magnetic characterization of iron oxides in solid waste landfill leachate. Journal of Hazardous Materials, 179(1–3), 701–708. https://doi.org/10.1016/j.jhazmat.2010.03.058 Lee, S., Kim, S., Kim, H., Seo, Y., Ha, Y., Kim, H., … Yu, Y. (2020). Tracing of traffic-related pollution using magnetic properties of topsoils in Daejeon, Korea. Environmental Earth Sciences, 79, 485. https://doi.org/10.1007/s12665-020-09223-9 Li, W., Mu, G., Zhang, W., Lin, Y., Zhang, D., & Song, H. (2019). Formation of greigite (Fe 3 S 4 ) in the sediments of saline lake Lop Nur, northwest China, and its implications for paleo-environmental change during the last 8400 years. Journal of Asian Earth Sciences, 174(November 2018), 99–108. https://doi.org/10.1016/j.jseaes.2018.11.021 Liaghati, T., Preda, M., & Cox, M. (2004). Heavy metal distribution and controlling factors within coastal plain sediments, Bells Creek catchment, southeast Queensland, Australia. Environment International, 29(7), 935–948. https://doi.org/10.1016/S0160-4120(03)00060-6 Liu, H., Yan, Y., Chang, H., Chen, H., Liang, L., Liu, X., … Sun, Y. (2019). Magnetic signatures of natural and anthropogenic sources of urban dust aerosol. Atmospheric Chemistry and Physics, 19(2), 731–745. https://doi.org/10.5194/acp-19-731-2019 Madi. (2022). Scanning Electron Microscope (SEM) Energy Despersive X-Ray(EDX). Yogyakarta: Laboratorium Penelitian Dan Pengujian Terpadu Universitas Gajah Mada. Magiera, T., Mendakiewicz, M., Szuszkiewicz, M., Jabłońska, M., & Chróst, L. (2016). Technogenic magnetic particles in soils as evidence of historical mining and smelting activity: A case of the Brynica River Valley, Poland. Science of The Total Environment, 566–567, 536–551. https://doi.org/https://doi.org/10.1016/j.scitotenv.2016.05.126 Maity, R., Venkateshwarlu, M., Mondal, S., Kapawar, M. R., Gain, D., & Paul, P. (2021). Magnetic and microscopic characterization of anthropogenically produced magnetic particles: a proxy for environmental pollution. International Journal of Environmental Science and Technology, 18(7), 1793–1808. https://doi.org/10.1007/s13762-020-02902-x Novala, G. C., Sudarningsih, Kirana, K. H., Fajar, S. J., Mariyanto, & Bijaksana, S. (2019). Testing the effectiveness of mechanical magnetic extraction in riverine and lacustrine sediments. Journal of Physics: Conference Series, 1204(1). https://doi.org/10.1088/1742-6596/1204/1/012085 Rachwał, M., Kardel, K., Magiera, T., & Bens, O. (2017). Application of magnetic susceptibility in assessment of heavy metal contamination of Saxonian soil (Germany) caused by industrial dust deposition. Geoderma, 295, 10–21. https://doi.org/10.1016/j.geoderma.2017.02.007 Sikumbang, N., & Heryanto, R. (1994). Peta Geologi Lembar Banjarmasin, Skala 1 : 250.000. Bandung: Pusat Penelitian dan Pengembangan Geologi. Singh, S., Parihar, P., Singh, R., Singh, V. P., & Prasad, S. M. (2016). Heavy metal tolerance in plants: Role of transcriptomics, proteomics, metabolomics, and ionomics. Frontiers in Plant Science, 6(FEB2016), 1–36. https://doi.org/10.3389/fpls.2015.01143 Smieja-Król, B., Fiałkiewicz-Kozieł, B., Sikorski, J., & Palowski, B. (2010). Heavy metal behaviour in peat - A mineralogical perspective. Science of the Total Environment, 408(23), 5924–5931. https://doi.org/10.1016/j.scitotenv.2010.08.032 Thompson, R., & Oldfield, F. (1986). Environmental Magnetism. https://doi.org/10.22498/pages.11.2-3.34 Veneva, L., Hoffmann, V., & Jordanova, D. (2003). Magnetic Susceptibility Screening of Anthropogenic Impact on the Danube River Sediments in Northwestern Bulgaria - Preliminary Results. Studia Geophysica et Geodaetica, 47(2), 403–418. https://doi.org/10.1023/A:1023736111156 Wang, P., Xue, J., & Zhu, Z. (2021). Comparison of heavy metal bioaccessibility between street dust and beach sediment: Particle size effect and environmental magnetism response. Science of the Total Environment, 777, 146081. https://doi.org/10.1016/j.scitotenv.2021.146081




DOI: http://dx.doi.org/10.20527/flux.v21i3.20532

Article Metrics

Abstract view : 115 times
PDF - 72 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Jurnal Fisika Flux: Jurnal Ilmiah Fisika FMIPA Universitas Lambung Mangkurat

Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Association with:

Physical Society of Indonesia

Indexed by:

 

Creative Commons License
Jurnal Fisika FLux: Jurnal Ilmiah FMIPA Universitas Lambung Mangkurat is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.