Implementasi Fuzzy Logic dalam Pembuatan Kontrol Navigasi Mobile Robot

Dairoh Dairoh, Mohammad Khambali, Trima Mustofa

Abstract


Artificial Intelligence is defined as intelligence exhibited by an artificial entity. Intelligence was created and put into a machine that can do the job as do humans. Some kinds of fields that use artificial intelligence include fuzzy logic, expert systems, computer games, neural networks and robotics. The purpose of research is Applying the theory of fuzzy logic in the manufacture of robot control and create teaching materials for the subjects of physics, especially on the concept of a microcontroller or other allied subjects of the research conducted. In this study apply fuzzy logic on the movement of wheeled robot control where in the controlling controlled via a smartphone which is then processed by a microcontroller Arduino that has grown the program by applying the method of fuzzy logic rule. Then by the microcontroller is used as a command to drive the DC motor as a navigation system that course in accordance with the rules created. Every step of the control system provides a signal in the form of a large steering angle (θ) which guides the robot to the target of a starting position. The results showed that the application of a system of fuzzy logic can be implemented in a navigation system for a robot control and the results of testing the robot's movement, then obtained some data points specified coordinates with the coordinates of the control robot acquired a 96% accuracy rate.


Keywords


Arduino, fuzzy logic, microcontrollers, robotics

References


Adriansyah, A. (2010). Perancangan Pengendali Robot Bergerak Berbasis Perilaku Menggunakan Particle Swarm Fuzzy Controller. Jurnal Ilmu Komputer Dan Informasi, 3(1), 1–9.

Filho, E. A, & Kienitz, K. H. (2003, May). Adaptive reference-driven decision-making process. In The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ'03. (Vol. 1, pp. 452-457). IEEE.

Kadir, A. (2014). Pintar Pemrograman Arduino. Yogyakarta: Mediacom Ofset.

Klir, K., George, J., & Bo, Y. (1995). Fuzzy Setsand Fuzzy Logics : Theory and Applications. New Jersey: Prentice¬ Hall Inc.

Kusumadewi, S. (2003). Artificial Intelligence (Teknik dan Aplikasi), Yogyakarta: Graha Ilmu.

Rendyansyah, R., Exaudi, K., & Prasetya, A. P. P. (2016). Navigasi Berbasis Behavior dan Fuzzy Logic pada Simulasi Robot Bergerak Otonom. Jurnal Nasional Teknik Elektro, 5(1).135-144.

Sanjaya, M. (2016). Panduan Membuat Robot Cerdas Menggunakan Arduino dan MATLAB. Yogjakarta : Andi Ofset.

Sutoyo, T., Mulyanto, E., & Suhartono, V. (2011). Kecerdasaan Buatan. Yogyakarta: Andi.

Wajiansyah, A., Supriadi, S., & Nur, S. (2018). Implementasi Fuzzy Logic Pada Robot Line Follower. Jurnal Teknologi Informasi dan Ilmu Komputer, 5(4), 395-402.

Wang, L. X. (1994). adaptive Fuzzy System and Control. Prentice Hall Inc.

Widodo, N. S. (2009). Penerapan Multi-Mikrokontroler Pada Model Robot Mobil Berbasis Logika Fuzi. TELKOMNIKA, 7(3), 213.

Zadeh, L. A. (1973). Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transactions on systems, Man, and Cybernetics, (1), 28-44.




DOI: http://dx.doi.org/10.20527/flux.v16i1.4717

Article Metrics

Abstract view : 1429 times
PDF (Bahasa Indonesia) - 756 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Jurnal Fisika FLUX

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Association with:

Physical Society of Indonesia

Indexed by:

 

Creative Commons License
Jurnal Fisika FLux: Jurnal Ilmiah FMIPA Universitas Lambung Mangkurat is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.