Perubahan Panjang Lokalisasi dan Kerapatan Keadaan Elektron pada Molekul DNA Poli(dA)-Poli(dT) Karena Medan Magnet
Abstract
The localization length and the Density Of State (DOS) of electron in a Poly(dA)-Poly(dT) DNA molecule at two temperatures have been calculated for several values of magnetic field. The calculation are carried out on a DNA molecule model that consists of adenine (A) and Thymine (T) nucleobases and sugar-phosphate backbone. The DNA molecule is modeled in tight binding Hamiltonian approachwith semi empirical Slater-Koster theory and Peierls phase factor for introducing the effect of temperature and magnetic field, respectively. In the model, electron is allowed to move between nucleobase sites, backbode sites, and between backbone site and nucleobase site. The localization length is obtained from the smallest Lyapunov exponent which is calculated using transfer matrix method along with Gram-Schmidtorthonormalization procedure. The DOS is calculated using Green’s function methodby taking into account the presence of metallic electrode at both ends of the DNA molecule. The localization length and the DOS change as a result of the change in electron wave phase due to magnetic field. The change is observed at both temperature used in the study, but the change at lower temperature is larger than the one at higher temperature. Thermally agitated vibrational twisting motion perturbs electron motion in the DNA molecule such that the influence of magnetic field on the localization length and the DOS of electron at higher temperature becomes smaller.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Bezerril, L. M., Moreira, D. A., Albuquerque, E. L., Fulco, U. L., de Oliveira, E. L., and de Sousa, J. S., 2009, Current-voltage characteristics of double-strand DNA sequences, Phys. Lett. A 373, 3381-3385.
Boon, E. M., Livingston, A. L., Chmiel, N. H., David, S. S., dan Barton, J. K., 2003, DNA-mediated charge transport for DNA repair, Proc. Natl. Acad. Sci. U.S.A., 100, 12543–12547.
Dandliker, P. J., Holmlin, R. E., dan Barton, J. K., 1997, Oxidative Thymine Dimer Repair in the DNA Helix, Science, 275, 1465–1468.
Eley, D. D., and Spivey, D. I.,1962, Semiconductivity of Organic Substances. Part 9.—Nucleic Acid in the dry state, Trans. Faraday Soc. 58, 411.
Endress, R. G., Cox, D. L., dan Singh, R. R. P., 2004, Colloqium: The quest for high-conductance DNA, Rev. Mod. Phys., 76, 195-214.
Fink, H. W., dan Schönenberger, C., 1999, Electrical conduction through DNA molecules, Nature 398, 407-10.
Genereux, J. C., Boal, A. K., dan Barton, J. K., 2010, DNA-mediated charge transport in redox sensing and signaling, J. Am. Chem. Soc., 132, 891–905.
Guo, A.-M., Xiong, S.-J., Yang, Z., dan Zhu, H.-J., 2008, Enhancement of transport in DNA-like systems induced by backbone disorder, Physical Review E 78, 0619221–0619225.
Gutiérrez, R., Mandal, S., dan Cuniberti, G., 2005, Quantum Transport through a DNA Wire in a Dissipative Environment, Nano Lett. 5, 1093.
Jo, Y.-S., Lee, Y., dan Roh, Y., 2003, Current–voltage characteristics of λ- and poly-DNA, Materials Science and Engineering: C 23, 841–846.
Kang, D., Jiang, H., Sun, Z., Qu, Z., dan Xie, S., 2011, Magnetic field tuned charge transport in a G4-DNA molecular devices, IOP Physics: Condenssed Matter 23, 055302.
Kasumov, A. Y., Kociak, M., Guéron, S., Reulet, B., Volkov, V. T., Klinov, D. V., dan Bouchiat, H., 2001, Proximity induced superconductivity in DNA, Science 291, 280.
Khatir, N. M., Abdul-Malek, Z., dan Banihashemian, S. M., 2015, Influences of Magnetic Fields on Current-voltage characteristics of gold-DNA-gold structure with variable gaps, Mater. Sci. Semicond. Process., vol. 36, pp. 134–139.
Khatir, N. M., Malek, Z.A., dan Banihashemian, S.M., 2014, Temperature and magnetic field driven modification in the I-V features of gold-DNA-gold structure, Sensors 14,19229 – 19241.
Klotsa, D., Romer, R.A., dan Turner, M.S., 2005, Electronics Transport in DNA, Biophys. J. 89, 2187.
Kratochvílová, I., Todorciuc, T., Král, K., Němec, H., Buncěk, M., Šebera, J., Záliš, S., Vokáčová, Z., Sychrovský, V., Bednárová, L., Mojzeš, V., dan Schneider, B., 2010, Charge transport in DNA oligonucleotides with various base-pairing patterns, J. Phys. Chem. B 114, 5196–5205.
Miller Jr, J. H., Villagrán, M. Y. S., Maric, S., dan Briggs, S. M., 2015, Normal and Impaired charge transport in biological system, Phys. B: Phys. Condens. Matter, 460, 119-125.
Muren, N. B., Olmon, E. D., dan Barton, J. K., 2012, Solution, surface, and single molecule platforms for the study of DNA-mediated charge transport, Phys. Chem. Chem. Phys. 14, 13754–13771.
Nokhrin, S., Baru, M., dan Lee, J. S., 2007, A field-effect transistor from M-DNA, Nanotechnology 18, 095205-095210.
Park, M. J., Fujitsuka, M., Kawai, K., dan Majima, T., 2011, Direct measurement of the dynamics of excess electron transfer through consecutive thymine sequence in DNA, J. Am. Chem. Soc. 133, 15320-15323.
Peierls, R., 1933, “Zur Theorie des Diamagnetismus von Leitungselektronen,” Z. Phys., vol. 80, no. 11–12, pp. 763–791.
Porath, D., Bezryadin, A., de Vries, S., dan Dekker, C., 2000, Direct measurement of electrical transport through DNA molecules, Nature 403, 635-638.
Qi, J., Edirisinghe, N., Rabbani, M. G., dan Anantram, M. P., 2013, Unified model for conductance through DNA with the Landauer-Büttiker formalism, Phys. Rev. B 87, 085404.
Rahmi, K. A. dan Yudiarsah, E., 2018, “I-V Characteristics Of A Four-Chain DNA Model In Environment Disorder”, akan terbit.
Ramos, M. M. D. dan Correia, H. M. G., 2011, “Electric field induced charge transfer through single- and double-stranded DNA polymer molecules,” Soft Matter, vol. 7, p. 10091.
Roche, S., 2003, Sequence dependent DNA-mediated conduction, Phys. Rev. Lett. 91, 1081011–1081014.
Sontz, P. A., Muren, N. B., dan Barton, J. K., 2012, DNA charge transport for sensing and signaling, Acc. Chem. Res., 45, 1792–1800.
Suhendro, D. K., Yudiarsah, E., and Saleh, R., 2010, “Effect of phonons and backbone disorder on electronic transport in DNA,” Phys. B: Phys. Condens. Matter, vol. 405, no. 23, pp. 4806–4811.
Wang, X. F., Chakraborty, T., dan Berashevich, J., 2010, Quantum transport anomalies in DNA containing mispairs, Nanotechnology 21, 485101.
Wong, J. R., Lee, K. J., Shu, J.-J., dan Shao, F., 2015, Magnetic fields facilitate DNA-mediated charge transport, Biochemistry, vol. 54, no. 21, pp. 3392–3399 (2015).
Yakushevich, L. V., 2004, Nonlinear physics of DNA 2nd ed (Weinheim: Wiley-VCH)
Yamada, H., Starikov, E. B., Henning, D., dan Archilla, J. F. R., 2005, Localization properties of electronic states in a polaron model of poly(dG)-poly(dC) and poly(dA)-poly(dT) DNA polymers, Eur. Phys. J. E 17, 149.
Zaffino, R. L., Mir, M., dan Samitier, J., 2014, Label-free detection of DNA hybridization and single point mutations in a nano-gap biosensor, Nanotechnology 25, 105501.
Zhang, Y., Austin, R. H., Kraeft, J., Cox, E. C., dan Ong, N. P., 2002, Insulating behavior of λ–DNA on the micron scale, Phys. Rev. Lett. 89, 198102 (2002).
DOI: http://dx.doi.org/10.20527/flux.v15i2.4929
Article Metrics
Abstract view : 986 timesPDF (Bahasa Indonesia) - 948 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 Jurnal Fisika FLUX
This work is licensed under a Creative Commons Attribution 4.0 International License.
Association with:
Indexed by:
Jurnal Fisika FLux: Jurnal Ilmiah FMIPA Universitas Lambung Mangkurat is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.