Efek Magneto-Impedansi Frekuensi Rendah pada Non Litografi Multilayer [NiFe/Cu]4

Wahyu Eko Prastyo, Budi Purnama, Nuryani Nuryani

Abstract


The magneto-impedance effect in multilayer system of [NiFe/Cu]4 present at this paper. The samples prepare by electrodepositin methods on a non-lithography pattern of PCB Cu substrate. The NiFe and Cu layer sequency produce to obtain a multilayer system [NiFe/Cu]4. Thereafter, sample evaluate magnetic property by using vibrating sample magnetometer (VSM).  Finally, sample evaluate a magneto-impedance response by total electrical impedance measure under various external magnetic field.  Typical magneto-impedance ratio of 7,56% indicate the sample can to apply as magnetic sensor at low frequency region.

Keywords


magneto impedance, multilayer, electrodeposition, low frequency

References


Chen, D. L., Li, X., Pan, H. L., & Luan, H. Y., Zhao, Z. J. (2014). Magneto–Impedance Effect of Composite Wires Prepared by Chemical Plating under DC Current.Nano–Micro Letters, 6(3), 227–232.

Chen, L., Zhou, Y., Lei, C., Zhou Z.M., & Ding, W. (2009). Effect of meander structure and line width on GMI effect in micro-patterned Co-based ribbon. Journal of Physics D: Applied Physics, 42(14), 145005.

Jiles, D. (2015). Introduction to magnetism and magnetic materials. Third Edition. CRC press.

Kwapulinski, P., Heneczok, G., Stoklosa, Z., & Rasek, J. (2011). Magnetoimpedance Effectin Amorphous and Nanocrystalline Alloys Based on Iron. Journal of Achievements in Materials and Manufacturing Engineering, 47(2), 166–176.

Liandro, J., Palfreyman, J. J., Ionescu, A., & Barnes, C. H. W. 2010. Magnetic biosensor technologies for medical applications: a review. Medical & Biological Engineering & Computing, 48(10), 977–998. doi:10.1007/s11517-010-0649-3.

Mohri, K., Kohsawa, T., Kawashima, K., Yoshida, H., & Panina, L. V. (1992). Magneto-inductive effect (MI effect) in amorphous wires. IEEE Transactions on Magnetics, 28(5), 3150–3152. doi:10.1109/20.179741.

Panina, L. V., & Mohri, K. (1994). Magneto‐impedance effect in amorphous wires. Applied Physics Letters, 65(9), 1189–1191. doi:10.1063/1.112104.

Prastyo, W. E., Maulana, F., Nuryani, N., & Purnama, B. 2017. Magneto-impedance in Multilayered [Ni80Fe20/Cu]4 with modification of the line-length pattern on Cu printed circuit board. Journal of Physics: Conference Series, 909, 012030. doi:10.1088/1742-6596/909/1/012030.

Tung, M. T., Hang Le, T. T., Tuan, L. A., Nghi, N. H., & Phan, M. H. 2014. Influence ofElectrodeposition Parameters on The Magnetic and Magneto–Impedance Properties of CoP/Cu Wires. Physica B Elsevier, 442, 16–20.

Yang, Z., Sun, X., Wang, T., Lei, C., Liu, Y., Zhou, Y., & Lei, J. (2015). A giant magnetoimpedance-based biosensor for sensitive detection of Escherichia coli O157:H7. Biomedical Microdevices, 17(1). 1-8. doi:10.1007/s10544-014-9925-6.




DOI: http://dx.doi.org/10.20527/flux.v16i1.5004

Article Metrics

Abstract view : 639 times
PDF (Bahasa Indonesia) - 352 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Jurnal Fisika FLUX

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Association with:

Physical Society of Indonesia

Indexed by:

 

Creative Commons License
Jurnal Fisika FLux: Jurnal Ilmiah FMIPA Universitas Lambung Mangkurat is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.