Sintesis dan Karakterisasi Silicon Carbide (SiC) dari Sekam Padi Menggunakan Metode Reduksi Magnesiotermik

Ahmad Sofyan Sulaeman, Sugianto Arjo, Akhiruddin Maddu

Abstract


Silicon Carbide (SiC) merupakan material keramik non-oksida yang memiliki tingkat kekerasan, titik leleh, dan konduktivitas termal yang tinggi. SiC dapat disintesis menggunakan prekursor silika (SiO2) dan karbon (C) dengan memanfaatkan SiO2 sebagai sumber silikon (Si). SiC telah disintesis dari sekam padimenggunakan prekursor SiO2 dan C dengan metode reduksi magnesiotermik. Sintesis SiC dilakukan dengan mencampurkan SiO2 dan C pada perbandingan rasio 1:3, kemudian diberi penambahan magnesium (Mg) dengan variasi massa dari 1,0 g, 1,5 g, dan 2,0 g. Selanjutnya, semua sampel dipanaskan dalam furnace pada temperatur 600 C selama 3 jam. Fase terbentuknya SiC diindikasikan dengan warna fisik pada setiap sampel yang berubah dari abu-abu menjadi putih kehijauan. Selanjutnya serbuk SiC dikarakterisasi menggunakan fourier transform infrared (FTIR) untuk mengetahui gugus fungsi dan X-Ray Diffractometer (XRD) untuk mengetahui derajat kristalinitas, sudut difraksi 2 , dan jarak antar kisi (d). Hasil karakterisasi FTIR menunjukkan adanya ikatan Si–C pada bilangan gelombang  786,89 – 941,19 cm-1. SiC yang diperoleh pada semua sampel memiliki struktur kubik (β-phase) atau dapat disebut β–SiC dengan karakteristik dhkl (111) dan parameter kisi pada kisaran 0,43 nm berdasarkan analisa menggunakan XRD. Penambahan 1 g Mg menghasilkan SiC yang terbaik dengan puncak intensitas difraksi 54 a.u pada sudut 36,04 . Semakin tinggi penambahan Mg pada proses sintesis menyebabkan penurunan intensitas, derajat kristalinitas, dan memperbesar ukuran kristal β–SiC. β–SiC yang disintesis dari sekam padi dengan temperatur rendah ini dapat diaplikasikan sebagai material keramik. Namun, diperlukan karakterisasi lebih lanjut menggunakan thermogravimetrical analysis (TGA) untuk mengetahui titik leleh serbuk SiC.

Keywords


Material Keramik, Reduksi Magnesiotermik, Sekam Padi, Silicon Carbide.

Full Text:

PDF

References


Abdurazik, D., 2016. Fourier Transform Infrared Spectroscopy ( FTIR ) Analysis of Silicon Carbide, Nanowires by.

Abu, R., Yahya, R., & Neon, S., 1876. Production of High Purity Amorphous Silica from Rice Husk. Procedia Chemistry, 19, Page: 189–195.

Anggono, J., Anggono, J., Tjitro, S., Wijaya, E., Teknik, J., & Petra, M. K., 2007. Pembuatan Keramik Silikon Karbida Menggunakan Campuran Serbuk Kayu Meranti dan Silikon.

Asnawi, M., Azhari, S., Hamidon, M.N., Ismail, I., & Helina, I., 2018. Synthesis of Carbon Nanomaterials from Rice Husk via Microwave Oven. Journal of Nanomaterials.

Astruc, D., 2005. The metathesis reactions: From a historical perspective to recent developments. New Journal of Chemistry, 29 (1), Page: 42–56.

Avincola, V.A., Fitzgerald, K., Kinay, D., & Steinbrueck, M., 2017. ScienceDirect ScienceDirect High-temperature tests of silicon carbide composite of GFR silicon carbide composite cladding tests under conditions cladding under GFR conditions the feasibility of using heat demand-outdoor function for a c long-term district heat demand forecast. Energy Procedia, 127, Page: 320–328.

Dasog, M., Smith, L.F., Purkait, T.K., & Veinot, J.G.C., 2013. Low temperature synthesis of silicon carbide nanomaterials using a solid-state method. Chemical Communications, 49 (62), Page: 7004–7006.

Guo, J.Z., Zuo, Y., Li, Z.J., Gao, W.D., & Zhang, J.L., 2007. Preparation of SiC nanowires with fins by chemical vapor deposition. Physica E: Low-Dimensional Systems and Nanostructures, 39 (2), Page: 262–266.

Hadi, S. & Triwikantoro, D., 2011. Sintesis Silika Berbasis Pasir Alam Bancar menggunakan Metode Kopresipitasi. Fisika Dan Aplikasinya, 7 (2), Hal: 7–10.

Hayati, M., 2006. Penggunaan Sekam Padi Sebagai Media Alternatif dan Pengujian Efektivitas Penggunaan Media Pupuk Daun Terhadap Pertumbuhan dan Hasil Tanaman Tomat Secara Hidroponik. journal Floratek, 2, Hal: 63–68.

Ju, Z., Ma, X., Fan, N., Li, P., Xu, L., & Qian, Y., 2007. High-yield synthesis of single-crystalline 3C-SiC nanowires by a facile autoclave route. Materials Letters, 61 (18), Page: 3913–3915.

Jyoti Prakash, Ramani Venugopalan, B.M. Tripathi, S.K., & Ghosh, J. K. C., 2015. Chemistry of one dimensional silicon carbide materials : Principle , production , application and future prospects. Progress in Solid State Chemistry, Page: 1–25.

Krishnarao, R. V., 1996. Formation of Sic from Rice Husk Black Mixture : Effect of Rapid Heating, 8842 (95), Page: 1–4.

Laar, J.H. Van, Slabber, J.F.M., Meyer, J.P., Walt, I.J., Puts, G.J., and Crouse, P.L., 2015. Microwave-Plasma Synthesis of Nano-sized Silicon Carbide at Atmospheric Pressure, Page: 1–24.

Li, J., Shirai, T., & Fuji, M., 2013. Rapid carbothermal synthesis of nanostructured silicon carbide particles and whiskers from rice husk by microwave heating method. Advanced Powder Technology.

M. Kandiban, & P. Vigneshwaran, I. V. P., 2015. Synthesis and Characterization of Mgo Nanoparticles for Photocatalytic, (January).

M Jinnah Sheik Mohamed, N.S., 2012. Experimental Investigation of Silicon Carbide Reinforced MoSi2 Ceramic Nanocomposite Prepared by Mechanical Milling. International Journal of Mechanical Engineering and Robotics Research, 1 (1).

Palacio, S., Aitkenhead, M., Escudero, A., Montserrat-Martí, G., Maestro, M., & Robertson, A.H.J., 2014. Gypsophile chemistry unveiled: Fourier transform infrared (FTIR) spectroscopy provides new insight into plant adaptations to gypsum soils. PLoS ONE, 9(9).

Pambayun, G. S., Yulianto, R.Y.E., Rachimoellah, M., & Putri, E. M. M., 2013. Pembuatan karbon aktif dari arang tempurung kelapa dengan aktivator ZnCl2 dan Na2CO3 sebagai adsorben untuk mengurai kadar fenol dalam air limbah. Jurnal Teknik POMITS, 2 (1), Hal: 116–120.

Pei, L.Z., Tang, Y.H., Chen, Y.W., Guo, C., Li, X.X., Pei, L.Z., Tang, Y.H., Chen, Y.W., Guo, C., Li, X.X., Yuan, Y., & Zhang, Y., 2006. Preparation of silicon carbide nanotubes by hydrothermal method, 114306.

Ramdja, A.F., Halim, M., & Handi, J., 2008. Pembuatan Karbon Aktif dari Pelepah Kelapa (Cocus nucifera). Jurnal Teknik Kimia, 15 (2), Hal: 1–8.

Sastrohamidjojo, H., 2013. Dasar-dasar Spektroskoppi. Yogyakarta: Gadjah Mada University Press.

Siahaan, S., Hutapea, M., Hasibuan, R., Kimia, D.T., Teknik, F., and Utara, U.S., 2013. Penentuan Kondisi Optimum Suhu Dan Waktu Karbonisasi. Jurnal Teknik Kimia USU, 2 (1), 26–30.

Simon Sembiring & Wasinton Simanjuntak., 2015. Silika Sekam Padi Potensinya Sebagai Bahan Baku Keramik Industri. Plantaxia.

Su, J., Gao, B., Chen, Z., Fu, J., An, W., Peng, X., Zhang, X., Wang, L., Huo, K., & Chu, P. K., 2016. Large-Scale Synthesis and Mechanism of β-SiC Nanoparticles from Rice Husks by Low-Temperature Magnesiothermic Reduction. ACS Sustainable Chemistry and Engineering, 4(12), Page: 6600–6607.

Sudjarwo, W.A.A., Dipayana, D.K., Setia, U., & Surakarta, B., 2015. Sintesis Silika Gel dari Abu Vulkanik Gunung Merapi.

Suparman, S., 2010. Sintesis Silikon Karbida (SiC) dari Silika Sekam Padi dan Karbon Kayu dengan Metode Reaksi Fasa Padat.

Taguchi, T., Igawa, N., Yamamoto, H., Shamoto, S.I., & Jitsukawa, S., 2005. Preparation and characterization of single-phase SiC nanotubes and C-SiC coaxial nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 28 (4), Page: 431–438.

Tutik Setianingsih, S., 2018. Prinsip Dasar dan Aplikasi Metode Difraksi Sinar-X untuk Karakterisasi Material. Malang: UB Press.

Yang, W., Araki, H., Hu, Q., Ishikawa, N., Suzuki, H., and Noda, T., 2004. In situ growth of SiC nanowires on RS-SiC substrate(s). Journal of Crystal Growth, 264 (1–3), 278–283.

Zhang, X.-F., Chen, Z., Feng, Y., Qiu, J., & Yao, J., 2018. Low-Temperature Transformation of C/SiO 2 Nanocomposites to β-SiC with High Surface Area. ACS Sustainable Chemistry & Engineering, 6 (1), Hal: 1068–1073.




DOI: http://dx.doi.org/10.20527/flux.v1i1.6146

Article Metrics

Abstract view : 4359 times
PDF - 1676 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Jurnal Fisika FLUX

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Association with:

Physical Society of Indonesia

Indexed by:

 

Creative Commons License
Jurnal Fisika FLux: Jurnal Ilmiah FMIPA Universitas Lambung Mangkurat is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.