Molecular Dynamics Simulation on Creep Mechanism of Nanocrystalline Cu-Ni Alloy

Kasum Kasum, Fajar Mulyana, Mohamad Zaenudin, Adhes Gamayel, M. N. Mohammed

Abstract


Creep mechanism is an essential mechanism for material when subjected to a high temperature and high pressure. It shows material ability during an extreme application to maintain its structure and properties, especially high pressure and temperature. This test is already done experimentally in many materials such as metallic alloys, various stainless steel, and composites. However, understanding the creep mechanism at the atomic level is challenging due to the instruments  limitation. Still, the improvement of mechanical properties is expected can be done in such a group. In this work, the creep mechanism of the nanocrystalline Cu-Ni alloy is demonstrated in terms of molecular dynamics simulation. The result shows a significant impact on both temperature and pressure. The deformation supports the mechanisms as a result of the grain boundary diffusion. Quantitative analysis shows a more substantial difference in creep-rate at a higher temperature and pressure parameters. This study has successfully demonstrated the mechanism of creep at the atomic scale and may be used for improving the mechanical properties of the material.


Keywords


Molecular dynamics simulation; creep behaviour; Cu-Ni alloy

Full Text:

PDF

References


Ahmed, J., Ramanujachary, K. V., Lofland, S. E., Furiato, A., Gupta, G., Shivaprasad, S. M., & Ganguli, A. K. (2008). Bimetallic Cu-Ni nanoparticles of varying composition (CuNi3, CuNi, Cu3Ni). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 331(3), 206–212. https://doi.org/10.1016/j.colsurfa.2008.08.007

Bakharev, P. V, Huang, M., Saxena, M., Lee, S. W., Joo, S. H., Park, S. O., … Ruoff, R. S. (2019). Chemically Induced Transformation of CVD-Grown Bilayer Graphene into Single Layer Diamond. Nature Nanotechnology, (Cmcm). https://doi.org/10.1038/s41565-019-0582-z

Baskaran, I., Sankara Narayanan, T. S. N., & Stephen, A. (2006). Pulsed electrodeposition of nanocrystalline Cu-Ni alloy films and evaluation of their characteristic properties. Materials Letters, 60(16), 1990–1995. https://doi.org/10.1016/j.matlet.2005.12.065

Brillo, J., & Egry, I. (2005). Surface tension of nickel, copper, iron and their binary alloys. In Journal of Materials Science (Vol. 40). https://doi.org/10.1007/s10853-005-1935-6

Cao, P., Short, M. P., & Yip, S. (2017). Understanding the mechanisms of amorphous creep through molecular simulation. Proceedings of the National Academy of Sciences of the United States of America, 114(52), 13631–13636. https://doi.org/10.1073/pnas.1708618114

Daw, M. S., & Baskes, M. I. (1984). Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Physical Review B, 29(12), 6443–6453. https://doi.org/10.1103/PhysRevB.29.6443

Foiles, S. M., Baskes, M. I., & Daw, M. S. (1986). Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Physical Review B. https://doi.org/10.1103/PhysRevB.33.7983

Gubicza, J., Jenei, P., Nam, K., Kádár, C., Jo, H., & Choe, H. (2018). Compressive behavior of Cu-Ni alloy foams: Effects of grain size, porosity, pore directionality, and chemical composition. Materials Science and Engineering A, 725(April), 160–170. https://doi.org/10.1016/j.msea.2018.04.018

Haslam, A. J., Yamakov, V., Moldovan, D., Wolf, D., Phillpot, S. R., & Gleiter, H. (2004). Effects of grain growth on grain-boundary diffusion creep by molecular-dynamics simulation. Acta Materialia, 52(7), 1971–1987. https://doi.org/10.1016/j.actamat.2003.12.048

Ji, K., Zhao, H., Zhang, J., Chen, J., & Dai, Z. (2014). Fabrication and electromagnetic interference shielding performance of open-cell foam of a Cu-Ni alloy integrated with CNTs. Applied Surface Science, 311, 351–356. https://doi.org/10.1016/j.apsusc.2014.05.067

Keblinski, P., Wolf, D., & Gleiter, H. (1998). Molecular-dynamics simulation of grain-boundary diffusion creep. Interface Science, 6(3), 205–212. https://doi.org/10.1023/A:1008664218857

Mizushima, I., Chikazawa, M., & Watanabe, T. (1996). Microstructure of electrodeposited Cu-Ni binary alloy films. Journal of the Electrochemical Society, 143(6), 1978–1983. https://doi.org/10.1149/1.1836935

Onat, B., & Durukanoǧlu, S. (2014). An optimized interatomic potential for Cu-Ni alloys with the embedded-atom method. Journal of Physics Condensed Matter, 26(3). https://doi.org/10.1088/0953-8984/26/3/035404

Pal, S., Meraj, M., & Deng, C. (2017). Effect of Zr addition on creep properties of ultra-fine grained nanocrystalline Ni studied by molecular dynamics simulations. Computational Materials Science, 126, 382–392. https://doi.org/10.1016/j.commatsci.2016.10.013

Plimpton, S. (1995). LAMMPS.

Sopousek, J., Vrestal, J., Pinkas, J., Broz, P., Bursik, J., Styskalik, A., … Lee, J. (2014). Cu-Ni nanoalloy phase diagram - Prediction and experiment. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 45, 33–39. https://doi.org/10.1016/j.calphad.2013.11.004

Studt, F., Abild-Pedersen, F., Wu, Q., Jensen, A. D., Temel, B., Grunwaldt, J. D., & Norskov, J. K. (2012). CO hydrogenation to methanol on Cu-Ni catalysts: Theory and experiment. Journal of Catalysis, 293, 51–60. https://doi.org/10.1016/j.jcat.2012.06.004

Stukowski, A. (2010). Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering, 18(1). https://doi.org/10.1088/0965-0393/18/1/015012

Sun, Z., Liu, B., He, C., Xie, L., & Peng, Q. (2019). Shift of creep mechanism in nanocrystalline NiAl alloy. Materials, 12(16). https://doi.org/10.3390/ma12162508

Teeriniemi, J., Taskinen, P., & Laasonen, K. (2015). First-principles investigation of the Cu-Ni, Cu-Pd, and Ni-Pd binary alloy systems. Intermetallics, 57, 41–50. https://doi.org/10.1016/j.intermet.2014.09.006

Wang, Y. J., Ishii, A., & Ogata, S. (2011). Transition of creep mechanism in nanocrystalline metals. Physical Review B - Condensed Matter and Materials Physics, 84(22), 1–7. https://doi.org/10.1103/PhysRevB.84.224102

Wang, Y. J., Ishii, A., & Ogata, S. (2012). Grain size dependence of creep in nanocrystalline copper by molecular dynamics. Materials Transactions, 53(1), 156–160. https://doi.org/10.2320/matertrans.MD201122

Wang, Y. J., Ishii, A., & Ogata, S. (2013). Entropic effect on creep in nanocrystalline metals. Acta Materialia, 61(10), 3866–3871. https://doi.org/10.1016/j.actamat.2013.03.026

Wolf, D., Yamakov, V., Phillpot, S. R., Mukherjee, A., & Gleiter, H. (2005). Deformation of nanocrystalline materials by molecular-dynamics simulation: Relationship to experiments? Acta Materialia, 53(1), 1–40. https://doi.org/10.1016/j.actamat.2004.08.045

Yang, X. S., Wang, Y. J., Zhai, H. R., Wang, G. Y., Su, Y. J., Dai, L. H., … Zhang, T. Y. (2016). Time-, stress-, and temperature-dependent deformation in nanostructured copper: Creep tests and simulations. Journal of the Mechanics and Physics of Solids, 94, 191–206. https://doi.org/10.1016/j.jmps.2016.04.021




DOI: http://dx.doi.org/10.20527/flux.v18i1.8548

Article Metrics

Abstract view : 70 times
PDF - 34 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Jurnal Fisika Flux: Jurnal Ilmiah Fisika FMIPA Universitas Lambung Mangkurat

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Association with:

Physical Society of Indonesia

Indexed by:

 

Creative Commons License
Jurnal Fisika FLux: Jurnal Ilmiah FMIPA Universitas Lambung Mangkurat is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.