Pemutakhiran Zona Musim (ZOM) Provinsi Aceh Menggunakan Data Blending Berbasis Non-Hirarki K-Means Clustering
Abstract
Climatologically, Aceh is influenced by global, regional, and local phenomena strongly influenced by the hilly mountain topography. Aceh is also surrounded by Indian Ocean in the west, Malacca Strait in the east and Andaman Sea in the north that making climate conditions more varied. The old season zone is not compatible to explain this condition. This paper makes an updated analysis by combining the observational and satellite data for rainfall activity explanation. We use k-means clustering based on the analysis of blending data between observation data and satellite imaging that produces more specific and updated season zone (ZOM). The clusters obtained are newly season zones that provide more specific mapping for dry and rainy season information. The updated season zone of 15 ZOM clusters based on k-means can figure a clear variation that means the accuracy of difference rainfall value can be more precise. From this research, the updated season zone can provide effective planning about strengthened from various government sectors in the future that can give a better policy to the public community.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Aldrian, E. (2008). Meteorologi Laut Indonesia. Jakarta: Badan Meteorologi dan Geofisika.
Ayundari, I., & Sutikno, S. (2019). Penentuan Zona Musim di Mojokerto Menurut Karakteristik Curah Hujan Dengan Metode Time Series Based Clustering. Inferensi, 2(2), 63-70.
Camus, P., Mendez, F. J., Medina, R., & Cofiño, A. S. (2011). Analysis of clustering and selection algorithms for the study of multivariate wave climate. Coastal Engineering, 58(6), 453-462.
Chanda, K., & Maity, R. (2016). Uncovering global climate fields causing local precipitation extremes. Hydrological Sciences Journal, 61(7), 1227-1237.
Edwards, R. B., Naylor, R. L., Higgins, M. M., & Falcon, W. P. (2020). Causes of Indonesia’s forest fires. World Development, 127, 104717.
Kappe, C. P., Böttinger, M., & Leitte, H. (2019, June). Analysis of Decadal Climate Predictions with User‐guided Hierarchical Ensemble Clustering. In Computer Graphics Forum, 38(3), 505-515.
McGregor, G. R. (2019). Climate and rivers. River Research and Applications, 35(8), 1119-1140.
Moron, V., Robertson, A. W., & Pai, D. S. (2017). On the spatial coherence of sub-seasonal to seasonal Indian rainfall anomalies. Climate Dynamics, 49(9-10), 3403-3423.
Netzel, P., & Stepinski, T. (2016). On using a clustering approach for global climate classification. Journal of Climate, 29(9), 3387-3401.
Pitri, R., Soleh, A. M., & Djuraidah, A. (2018). Statistical downscaling modeling through k-means clustering. International Journal of Scientific Research in Science, Engineering and Technology, 4(9), 220-227.
Rahman, M., Yang, R., & Di, L. (2018). Clustering Indian Ocean tropical cyclone tracks by the standard deviational ellipse. Climate, 6(2), 39.
Saha, M., & Mitra, P. (2019). Identification of Indian monsoon predictors using climate network and density-based spatial clustering. Meteorology and Atmospheric Physics, 131(5), 1301-1314.
Sellers, S., & Gray, C. (2019). Climate shocks constrain human fertility in Indonesia. World Development, 117, 357-369.
Simanjuntak, A. V., Muksin, U., & Rahmayani, F. (2018). Microtremor survey to investigate seismic vulnerability around the Seulimum Fault, Aceh Besar-Indonesia. MS&E, 352(1), 012046.
Straus, D. M. (2019). Clustering Techniques in Climate Analysis. In Oxford Research Encyclopedia of Climate Science.
Thiede, B. C., & Gray, C. L. (2017). Heterogeneous climate effects on human migration in Indonesia. Population and Environment, 39(2), 147-172.
Ushio, T., Okamoto, K. I., Iguchi, T., Takahashi, N., Iwanami, K., Aonashi, K., Shige, S., Hashizume, H., Kubota, T., & Inoue, T. (2003). The global satellite mapping of precipitation (GSMaP) project. Aqua (AMSR-E), 2004.
Yamanaka, M. D. (2016). Physical climatology of Indonesian maritime continent: An outline to comprehend observational studies. Atmospheric Research, 178, 231-259.
Zscheischler, J., Mahecha, M. D., & Harmeling, S. (2012). Climate classifications: the value of unsupervised clustering. Procedia Computer Science, 9, 897-906.
DOI: http://dx.doi.org/10.20527/flux.v18i1.8746
Article Metrics
Abstract view : 688 timesPDF (Bahasa Indonesia) - 940 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Jurnal Fisika Flux: Jurnal Ilmiah Fisika FMIPA Universitas Lambung Mangkurat
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Association with:
Indexed by:
Jurnal Fisika FLux: Jurnal Ilmiah FMIPA Universitas Lambung Mangkurat is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.