KAJIAN TEKNIS GEOMETRI PELEDAKAN LAPISAN BATUBARA PT PAMAPERSADA NUSANTARA DISTRICT PT ADARO INDONESIA KABUPATEN TABALONG KALIMANTAN SELATAN

Eko Nopiadiel\(^1\), Uyu Saismana\(^2\), Romla Noor Hakim\(^3\), Muhammad Adiya\(^3\)

\(^{1}\) Mahasiswa Program Studi Teknik Pertambangan, Fakultas Teknik, Universitas Lambung Mangkurat
\(^{2}\) Program Studi Teknik Pertambangan, Fakultas Teknik, Universitas Lambung Mangkurat
\(^{3}\) PT Pampersada Nusantara site Adaro Indonesia
e-mail: enopiadiel@gmail.com

ABSTRAK

Dalam dunia kerja pertambangan proses satu dengan yang lainnya akan saling bervektor. Demikian pula proses peledakan yang begitu erat kaitannya dengan proses pengalihan pemukaan, terutama material hasil peledakan itu sendiri PT Pampersada Nusantara district PT Adaro Indonesia yang beraktivitas di pit Tutupan Tanjung Kalimantan Selatan pun tidak lepas dari salah satunya kaitan pertambangan yaitu kegiatan blasting. Dengan adanya proses blasting material batubara akan lebih mudah dan cepat untuk digali oleh alat mekanis yang bekerja.

Untuk hasil dari peledakan batubara dengan geometri yang digunakan oleh PT Pampersada Nusantara masih berpotensi mengalami ukuran batubara yang terlalu besar (big coal). Yang mana ukuran hasil peledakan diatas 50 cm masih diangka 44,84 %, dari lima lokasi peledakan yang diteliti. Hal ini harus segera diatasi agar PT Adaro Indonesia tidak merasa dirugikan. Karna telah disepakati ukuran boulder dari batubara hasil peledakan yang diringinkan oleh pihak PT Adaro Indonesia sebagai owner yaitu ukuran 50 cm ≤ 30 %.

Upanya untuk memperoleh hasil peledakan yang lebih optimal, perlu dilakukan perbaikan rancangan peledakan yang terdiri sebagai berikut. Untuk geometri dengan burden 7 m, spasi 8 m dilakukan perbaikan dari stemmimg 3.9 m menjadi 3.3 m, powder column 2.53 m menjadi 3.20 m, isian handuk 47.4 kg/lubang menjadi 77.62 kg/lubang yang menghasilkan boulder 50 cm diangka optimum yaitu 29.50 %. Burden 8 m, spasi 9 m dan kedalaman 7.3 m dilakukan perbaikan stemmimg 4.7 m menjadi 2.8 m, powder column 2.20 m menjadi 4.50 m, isian handuk 64,51 kg/lubang menjadi 109.12 kg/lubang dan menghasilkan boulder optimum 29.21 %. Burden 8 m, spasi 8 m dan kedalaman 6.8 m dilakukan perbaikan stemmimg 4.7 m menjadi 2.7 m, powder column 2.28 m menjadi 4.10 m, isian handuk 64.80 kg/lubang menjadi 99.34 kg/lubang dan menghasilkan boulder optimum 29.48 % ukuran 50 cm.

Kata-kata kunci : densities batubara, fragmentasi boulder, geometri peledakan, powder factor

PENDAHULUAN

Proses peledakan yang begitu erat kaitannya dengan proses pengalihan pemukaan, terutama material hasil peledakan itu sendiri PT Pampersada Nusantara district PT Adaro Indonesia yang beraktivitas di pit Tutupan Tanjung Kalimantan Selatan pun tidak lepas dari salah satunya kaitan pertambangan yaitu kegiatan blasting. Dengan adanya proses blasting material batubara akan lebih mudah dan cepat untuk digali oleh alat mekanis yang bekerja.

Peledakan batubara dengan geometri yang digunakan oleh PT Pampersada Nusantara masih berpotensi mengalami ukuran batubara yang terlalu besar (big coal), untuk memperoleh hasil peledakan yang lebih optimum, perlu dilakukan perbaikan rancangan geometri peledakan.

METODOLOGI

Kegiatan peledakan yaitu suatu upaya pemberian batuan dari batuan induk menggunakan bahan peledak. Peledakan dapat dimanfaatkan untuk berbagai kepentingan baik itu positif maupun negatif seperti untuk memenuhi tujuan politik, ideologi, tekenik, industri dan lain-lain. Suatu operasi peledakan dinyatakan berhasil dengan baik pada kegiatan penambangan apabila :

1. Target produksi terpenuhi (dinyatakan dalam ton/hari atau ton/bulan).
2. Penggunaan bahan peledak efisien yang dinyatakan dalam jumlah batuan yang berhasil dibongkar per kilogram bahan peledak (powder factor).
3. Diperoleh fragmentasi batuan berukuran merata dengan sedikit bongkah (kurang dari 15 % dari jumlah batuan yang terbongkar per peledakan).
4. Diperoleh dinding batuan yang stabil dan rata (tidak ada overbreak, overhang, retakan-retakan).
5. Aman.
6. Dampak terhadap lingkungan minimal.

(Koesnaryo, 2001; 1-2)

Geometri Peledakan C. J. Konya (1972)

1. Burden (B)
 Secara sistematis besarnya burden dalam feet (B) dan hubungannya dengan faktor-faktor lain seperti relative bulk strength (St.), diameter lubang lekar dalam inchi (De), berat jenis batuan dibongkar dalam ton/m³ (SGr), dinyatakan dengan persamaan (1), (2), dan (3). Di mana B.

 \[
 B = 3.15 \times De \times \left(\frac{SGr}{SGr} \right)^{0.3} \tag{1}
 \]

 \[
 B = \left(\frac{2 \times SGr}{SGr} + 1.50 \right) \times De \tag{2}
 \]

 \[
 B = 0.67 \times De \times \left(\frac{St.}{SGr} \right)^{0.75} \tag{3}
 \]

 Setelah diketahui nilai burden dasarnya, maka harus dikoreksi burden terkoreksi dalam satuan feet (Be) terhadap beberapa faktor penentu, yaitu faktor jumlah baris lubang lekar (Kr), faktor koreksi terhadap posisi lapisan batuan (Kb), dan faktor koreksi terhadap struktur geologi setempat (Ks). Secara matematis persamaan burden terkoreksi dapat ditulis dengan persamaan (4).

2. Spacing (S)

Menentukan jarak spacing didasarkan pada jenis detonator listrik yang digunakan dan berapa besar perbedaan antara tinggi jenjang dan jarak burden.
Bila perbandingan antara H/B lebih kecil dari 4 maka digolongkan jenjang rendah dan lebih besar dari 4 maka digolongkan jenjang tinggi (Tabel 1).

<table>
<thead>
<tr>
<th>Tipe Detonator</th>
<th>H/B<4</th>
<th>H/B=4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instantaneous</td>
<td>S=(H+2B)/3</td>
<td>S=2B</td>
</tr>
<tr>
<td>Delay</td>
<td>S=(H+7B)/8</td>
<td>S=1.4B</td>
</tr>
</tbody>
</table>

3. Stemming (T)

 Stemming adalah lubang ledak bagian atas yang tidak disi bahan peledak, tetapi biasanya disisi oleh abu hasil pemboman atau material berukuran kerikil dan dipadatkan di atas bahan peledak. Stemming (T) dengan persamaan (5).

\[
T = 0.7 \times B
\]

(5)

Ukuran material stemming yang optimal yaitu material yang memiliki diameter rata-rata sekitar 0.05 x diameter lubang ledak. Material harus menyadut agar bekerja dengan tepat, jika bentuknya membulat maka stemming tidak akan berfungsi dengan baik. Konya-Edward (1990) memberikan persamaan (6) untuk menentukan ukuran material stemming dalam inchi (SZ).

\[
SZ = 0.05 \times Dc
\]

(6)

4. Subdrilling (I)

 Subdrilling adalah lubang ledak yang dibor sampai melebihi batas lantai jenjang bagian bawah supaya batuan dapat meledak secara fullface dan untuk menghindari kemungkinan adanya tonggolan-tonggolan (toe) pada lantai jenjang lantai bagian bawah tambuhan kedalaman dari lubang tempat di bawah rencana lantai jenjang. Persamaan (7) digunakan untuk menghitung subdrilling.

\[
J = 0.3 \times B
\]

(7)

5. Tinggi Jenjang (H)

 Secara praktis hubungan di antara kedalaman lubang bor dengan ketegangan jenjang dapat ditentukan dengan persamaan (8), dimana L adalah kedalaman lubang ledak dan J adalah subdrilling.

\[
H = L - J
\]

(8)

6. Kedalaman lubang ledak (L)

 Kedalaman lubang ledak tidak boleh lebih kecil dari ukuran burden untuk menghindari terjadinya overbreaks dan cratering, biasanya ditentukan berdasarkan kapasitas produksi yang diinginkan dan kapasitas dari alat muat. Untuk menentukan kedalaman lubang ledak digunakan persamaan (9), dimana α merupakan sudut kemiringan lubang ledak yang diinginkan.

\[
L = \frac{(H + J)}{\alpha}
\]

(9)

7. Powder Column (PC)

 Powder column adalah panjang lubang isian pada lubang ledak yang akan diisi bahan peledak. Persamaan (19) digunakan untuk menghitung besar powder column dalam satuan meter.

\[
PC = L - T
\]

(10)

8. Loading Density (de)

 Loading density adalah jumlah isian bahan peledak per meter panjang kolom isian. Perhitungan jumlah loading density dalam kg/m dihitung menggunakan persamaan (11), dimana De adalah diameter lubang ledak dalam inchi, dan SG ialah berat jenis bahan peledak (gr/cc).

\[
de = 0.34 \times (SG) \times Dc^2
\]

(11)

9. Jumlah bahan peledak dalam satu lubang ledak (E)

 Jumlah bahan peledak adalah jumlah isian bahan peledak sepangjang kolom isian dalam satuan meter yang dihitung dengan persamaan (12).

\[
E = PC \times de
\]

(12)

10. Powder Factor (PF)

 Powder factor (PF) adalah suatu bilangan yang digunakan untuk menyatakan perbandingan antara berat batuan yang diledakan dengan berat bahan peledak yang digunakan, dapat dinyatakan dalam kg/bom.

\[
PF = \frac{F}{\gamma}
\]

(13)

Faktor Batuan

Pembobotan massa batuan yang berhubungan dengan peledakan adalah pembobotan massa batuan berdasarkan nilai indeks peledakan dan parameter-parameter untuk pembobotan tersebut meliputi deskripsi massa batuan, spasi bidang kekar, orientasi bidang kekar, pengaruh specific gravity dan kekerasan (Tabel 2).

Indeks peledakan (BI) diperoleh dari pembobotan parameter tersebut, sehingga diperoleh persamaan (14) untuk nilai indeks peledakan. Dari nilai indeks peledakan dapat diketahui faktor batuan (A) dengan persamaan (15).

\[
BI = 0.5(RMD+JPS+PJO+SGI+H)
\]

(14)

\[
A = BI \times 0.12
\]

(15)

Memperkirakan Fragmentasi Batuan Dengan Metode Kuz-Ram

Fragmentasi batuan hasil peledakan sangat dipengaruhi oleh faktor batuan dan bahan peledak yang digunakan. Kuznetsov membuat rumus persamaan (16) untuk memperkirakan fragmentasi batuan hasil peledakan. \(X\) adalah ukuran rata - rata fragmentasi batuan dalam satuan meter, A adalah faktor batuan (7 untuk batuan medium strength, 10 untuk batuan keras yang berjoint intensif, 13 untuk batuan keras dengan sedikit joint, V ialah volume batuan yang terbongkar dalam m³, Q merupakan berat bahan peledak tiap lubang ledak dalam kg, dan E ialah Relatif Weight Strength. Sementara indeks

Jurnal GEOSAPTA Vol. 4 No.2 Juli 2018
keseragaman (n) dapat dihitung dengan persamaan (17), dimana D adalah diameter isian dalam mm, B burden, Spacing, PC panjang isian, dan H tinggi jenjang, keempatnya dalam satuan meter. W deviasi pemboran dan A nisbah spacing dan burden.

\[
X = A \left(\frac{W}{D} \right)^{0.5} \times Q^{0.47} \times \left(\frac{E}{115} \right)^{-0.60}
\]

\[
n = \left(2.2 - 14 \frac{B}{D} \right) \times \left(1 - \frac{W}{B} \right) \times \left(1 + A \frac{H}{2} \right) \times \left(\frac{PC}{H} \right)
\]

Sedangkan untuk mengetahui distribusi ukuran fragmentasi digunakan persamaan (18) Cunningham yang digabungkan dengan persamaan Kuznetsov. Dimana R adalah bagian material yang tertahan pada ayakan dalam %, x adalah ukuran ayakan dalam satuan cm, Xc adalah karakteristik ukuran dalam cm, dan n indeks keseragaman.

\[
Xc = \frac{x}{0.6936^{R}}
\]

\[
R = e^{-\left(\frac{Xc}{X} \right) n}
\]

Peledakan Batubara PT Pamapersada Nusantara

Dalam melakukan proses loading batubara di pit Tutupan oleh PT Pama, rata-rata PT Pamapersada Nusantara menggunakan alat gali yang berukuran besar seperti PC 1250, PC 2000 hingga PC 3000. Demi mencapai target yang telah diberikan oleh PT Adaro Indonesia. Oleh karena itu, dengan tujuan mempermudah dan mempercepat proses loading batubara baik di sisi lowwall ataupun highwall agar tercapai target produksi dilakukanlah proses peledakan batubara. Yang murna harapannya material hasil blasting akan lebih mudah dan lebih cepat untuk digali sehingga proses loading batubara bisa lebih efektif.

Geometri Peledakan

Geometri peledakan menjadi parameter yang sangat penting untuk menentukan tingkat fragmentasi yang didapat. Apabila tingkat fragmentasi masih belum sesuai dengan hasil yang diharapkan, maka dapat diperbaiki dengan mengubah geometri peledakan hingga diperoleh tingkat fragmentasi yang diharapkan. PT Pamapersada Nusantara menetapkan diameter lubang ledak dan subdrilling sebesar 7.875 inch dan 0.5 meter. Geometri masing-masing lokasi peledakan yang terdiri laporan masalah material boulder, dikelompokkan berdasarkan burden dan spasi dapat dilihat pada Tabel-3.

Densitas Batubara

Densitas batubara di area Pit Tutupan diperoleh dari hasil pengujian di laboratorium Geoteknik PT Adaro Indonesia yang sudah dilakukan sebelum penelitian ini dilakukan. Densitas diambil dari seam batubara yang ada pada pit Tutupan. Ada beberapa seam yang ada di PT Adaro Indonesia yang ada pada pit Tutupan, yaitu T100, T200 dan T300.

Faktor Batuan

Peledakan berhubungan dengan suatu nilai yang disebut dengan Indeks Kemampuancan (Blastability Index) yang berdasarkan faktor batuan (Rock Factor). Nilai dari Blastability Index dan Rock Factor dapat ditentukan dengan pemboitan beberapa parameter, yaitu Rock Mass Description (RMD), Joint Plane Spacing (JPS), Joint Plane Orientation (JPO), Specific Gravity Influence (SGI) dan Hardness (H).

Perhitungan Fragmen Batuan Hasil Peledakan dan Persentase Boulder

Ukuran fragmen batuan teoritis dihitung dengan menggunakan metode Kuz-Ram berdasarkan dari data-data geometri peledakan, diameter lubang ledak, jumlah penggunaan bahan peledak, volume batuan yang terbongkar dan faktor batuan pada lokasi peledakan serta adanya nisbah spasi burden. Dari salah satu contoh hasil perhitungan didapatkan ukuran fragmen ukuran 50 cm rata-rata sebesar 44.84 %. Fragmen batuan tidak baik atau yang dikatakan sebagai big coal pada penelitian ini diambil dari ukuran bongkahan sebesar 50 cm diatas 30 % berdasarkan ketetapan dari perusahaan.

<table>
<thead>
<tr>
<th>Tabel 2. Pembobotan Massa Batuan untuk Peledakan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Rock Mass Description (RMD)</td>
</tr>
<tr>
<td>1.1 Powder/Frangible</td>
</tr>
<tr>
<td>1.2 Breaky</td>
</tr>
<tr>
<td>1.3 Totally massive</td>
</tr>
<tr>
<td>2. Joint Plane Spacing (JPS)</td>
</tr>
<tr>
<td>2.1 Close (< 0.1m)</td>
</tr>
<tr>
<td>2.2 Intermediate (0.1 - 1.0m)</td>
</tr>
<tr>
<td>2.3 Wide (>1.0m)</td>
</tr>
<tr>
<td>3. Joint Plane Orientation (JPO)</td>
</tr>
<tr>
<td>3.1 Horizontal</td>
</tr>
<tr>
<td>3.2 Dip out of face</td>
</tr>
<tr>
<td>3.3 Strike normal to face</td>
</tr>
<tr>
<td>3.4 Dip into face</td>
</tr>
<tr>
<td>4. Specific Gravity Influence (SGI)</td>
</tr>
<tr>
<td>5. Hardness (H)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabel 3. Geometri Peledakan Aktual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometri Peledakan</td>
</tr>
<tr>
<td>Diameter Lubang Ledak (mm)</td>
</tr>
<tr>
<td>Burden (m)</td>
</tr>
<tr>
<td>Spasi (m)</td>
</tr>
<tr>
<td>Subdrilling (m)</td>
</tr>
<tr>
<td>Stemming (m)</td>
</tr>
<tr>
<td>Kedalaman Lubang (m)</td>
</tr>
<tr>
<td>Tinggi Jenjang (m)</td>
</tr>
<tr>
<td>Panjang Kolom Isian (m)</td>
</tr>
<tr>
<td>Isian Bahan Peledak (Kg)</td>
</tr>
<tr>
<td>Powder Factor (kg/m³)</td>
</tr>
</tbody>
</table>

Jurnal GEOSAPTA Vol. 4 No.2 Juli 2018 131
PEMBAHASAN

Rancangan Perbaikan Geometri Peledek (7x8)

Pada Tabel 4, diberikan perbaikan geometri peledek yang diawarkan demi tercapainya target. Dari tabel dapat kita amati pada plan 2 merupakan perbaikan yang mendekati hasil yang diharapkan. Geometri pada plan 2 menghasilkan boulder kurang 50 cm mendekati dan tidak lebih dari 30%, yaitu 29.45%. Hasil tersebut merupakan perbaikan yang dinilai paling optimum jika diukur dari ukuran boulder yang diharapkan.

Dari rancangan perbaikan geometri peledek untuk burden dan spasi 7 x 8 dapat dilakukan variabel geometri yang mengalami perubahan. Dapat dirincikan variabel geometri yang diberikan perubahan dari keadaan yang digunakan oleh PT Pamapersada Nusantara untuk menghasilkan boulder yang diharapkan adalah stemming dan panjang kolom isian, seperti yang terlihat pada Gambar-1.

Isian bahan pelek dana merupakan variabel yang mengalami perubahan dalam perbaikan geometri peledek batubara ini. Pada plan 2 isian bahan pelek dana diperbanyak sebesar 30.58 kg/hubungan yaitu 77.62 kg/hubungan. Yaitu sebelumnya pada aktual yang digunakan 47.04 kg/hubungan. Hal ini harus dilakukan untuk mencegah hasil boulder yang diharapkan.

Gambar-3 menunjukkan bahwa powder factor (PF) secara otomatis mengalami peningkatan karena bahan peledek yang ditambah dari aktual yang biasa digunakan.

PF untuk geometri 7 x 8 mengalami peningkatan sebesar 0.10 kg/m² menjadi 0.23 kg/m² dari aktual sebelum perbaikan 0.14 kg/m².

Rancangan Perbaikan Geometri Peledek (8x9)

Kedalaman 7.3 m

Berikut rancangan perbaikan untuk geometri 8x9 kedalaman 7.3 m dalam bentuk Tabel 5. Plan 2 merupakan perbaikan yang mendekati hasil yang diharapkan. Geometri pada plan 2 menghasilkan boulder kurang 50 cm mendekati dan tidak lebih dari 30%, yaitu 29.21%. Hasil tersebut merupakan perbaikan yang dinilai paling optimum jika diukur dari ukuran boulder yang diharapkan.

Rancangan perbaikan geometri peledek untuk burden dan spasi 8 x 9 kedalaman 7.3 m dapat dilakukan variabel geometri yang mengalami perubahan dari aktual yang digunakan oleh PT Pamapersada Nusantara untuk menghasilkan boulder yang diharapkan adalah stemming dan panjang kolom isian, seperti yang terlihat pada Gambar-4.

Isian bahan pelek dana merupakan variabel yang mengalami perubahan dalam perbaikan geometri peledek batubara ini. Pada plan 2 isian bahan pelek dana diperbanyak sebesar 44.61 kg/hubungan yaitu 109.12 kg/hubungan. Yaitu sebelumnya pada aktual yang digunakan 64.51 kg/hubungan. Hal ini harus dilakukan untuk mencegah hasil boulder yang diharapkan.
Powder factor (PF) secara otomatis mengalami peningkatan karna bahan peledek yang ditambah dari aktual yang biasa digunakan. PF untuk geometri 7 x 8 mengalami peningkatan sebesar 0.06 kg/m² menjadi 0.22 kg/m² dari aktual sebelum perbaikan 0.14 kg/m².

Plan 2 merupakan perbaikan yang mendekati hasil yang diharapkan. Pada Tabel-5 di atas yang menjelaskan bahwa geometri pada plan 2 menghasilkan boulder ukuran 50 cm mendekati dan tidak lebih dari 30%, yaitu 29.48 %. Hasil tersebut merupakan perbaikan yang dinilai paling optimum jika diukur dari ukuran boulder yang diharapkan.

Rancangan perbaikan geometri peledak untuk burden dan spasi 8 x 9 kedalaman 6.8 dapat dianalisa variabel geometri yang mengalami perubahan dari aktual yang digunakan oleh PT Pamapersada Nusantara untuk menghasilkan boulder yang diharapkan adalah stemming.

Isian bahan peledak merupakan variabel yang mengalami perubahan dalam perbaikan geometri peledakan batubara ini. Pada plan 2 isian bahan peledak diperbanyak sebesar 34.54 kg/lubang yaitu 99.34 kg/lubang. Yang sebelumnya pada aktual yang digunakan 64.8 kg/lubang. Hal ini harus dilakukan untuk mengatasi hasil boulder yang diharapkan dan panjang kolom isian, seperti yang terlihat pada Gambar 7. Dari Gambar 9 di atas powder factor (PF) mengalami peningkatan karna bahan peledak yang ditambah dari aktual yang biasa digunakan. PF untuk geometri 7 x 8 mengalami peningkatan sebesar 0.06 kg/m² menjadi 0.22 kg/m² dari aktual sebelum perbaikan 0.15 kg/m².

Geometri yang Paling Mempengaruhi Boulder

Dalam kasus penelitian ini geometri merupakan komponen utama yang mengalami perubahan untuk memperbaiki permasalahan yang ada di peledakan batubara PT Pamapersada Nusantara. Geometri yang diterapkan oleh perusahaan masih memiliki kekurangan, terutama untuk menghasilkan ukuran/boulder batubara hasil peledakan yang ideal. Dengan perbaikan yang direncanakan dalam penelitian ini dapat dijelaskan bahwa variabel yang mengalami perubahan paling signifikan mempengaruhi hasil boulder peledakan adalah isian bahan peledak, yaitu jika isian bahan peledak bertambah maka akan mempengaruhi pula terhadap stemming dan powder column. Jadi dapat disimpulkan isian bahan peledak variabel yang paling berpengaruh terhadap besar kecilnya ukuran boulder yang diharapkan, demi menghindari terjadinya big coal dalam peledakan batubara yang dilaksanakan.

Tabel-5. Rancangan Perbaikan Geometri Peledakan 8 x 9

<table>
<thead>
<tr>
<th>Geometri Perledakan</th>
<th>Actual (m)</th>
<th>Plan 1 (m)</th>
<th>Plan 2 (m)</th>
<th>Plan 3 (m)</th>
<th>Plan 4 (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter Lubang</td>
<td>7.975</td>
<td>7.975</td>
<td>7.975</td>
<td>7.975</td>
<td>7.975</td>
</tr>
<tr>
<td>Burden (m)</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Spasi (m)</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Subdrilling (m)</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Stemming (m)</td>
<td>4.7</td>
<td>3.44</td>
<td>2.8</td>
<td>1.93</td>
<td>1.38</td>
</tr>
<tr>
<td>Kedalaman Lubang (m)</td>
<td>6.9</td>
<td>7.3</td>
<td>7.3</td>
<td>7.3</td>
<td>7.3</td>
</tr>
<tr>
<td>Tinggi Jengking (m)</td>
<td>6.8</td>
<td>6.8</td>
<td>6.8</td>
<td>6.8</td>
<td>6.8</td>
</tr>
<tr>
<td>Panjang Kolom (m)</td>
<td>2.20</td>
<td>2.36</td>
<td>4.5</td>
<td>5.37</td>
<td>5.92</td>
</tr>
<tr>
<td>Isian Bahan (Kg)</td>
<td>64.51</td>
<td>98.95</td>
<td>109.12</td>
<td>130.23</td>
<td>143.45</td>
</tr>
</tbody>
</table>

Tabel-6. Rancangan Perbaikan Geometri Peledakan 8 x 9

<table>
<thead>
<tr>
<th>Geometri Perledakan</th>
<th>Actual (m)</th>
<th>Plan 1 (m)</th>
<th>Plan 2 (m)</th>
<th>Plan 3 (m)</th>
<th>Plan 4 (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter Lubang</td>
<td>7.975</td>
<td>7.975</td>
<td>7.975</td>
<td>7.975</td>
<td>7.975</td>
</tr>
<tr>
<td>Burden (m)</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Spasi (m)</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Subdrilling (m)</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Stemming (m)</td>
<td>4.7</td>
<td>3.26</td>
<td>2.70</td>
<td>2.22</td>
<td>1.30</td>
</tr>
<tr>
<td>Kedalaman Lubang (m)</td>
<td>6.8</td>
<td>6.6</td>
<td>6.6</td>
<td>6.6</td>
<td>6.6</td>
</tr>
<tr>
<td>Tinggi Jengking (m)</td>
<td>6.3</td>
<td>6.3</td>
<td>6.3</td>
<td>6.3</td>
<td>6.3</td>
</tr>
<tr>
<td>Panjang Kolom (m)</td>
<td>2.28</td>
<td>3.54</td>
<td>4.10</td>
<td>4.58</td>
<td>5.50</td>
</tr>
<tr>
<td>Isian Bahan (Kg)</td>
<td>64.8</td>
<td>65.73</td>
<td>99.34</td>
<td>111.13</td>
<td>133.36</td>
</tr>
<tr>
<td>Powder Factor (kg/m²)</td>
<td>0.15</td>
<td>0.189</td>
<td>0.219</td>
<td>0.245</td>
<td>0.294</td>
</tr>
<tr>
<td>Boulder 30 cm</td>
<td>43.25</td>
<td>35.52</td>
<td>29.48</td>
<td>24.08</td>
<td>14.34</td>
</tr>
<tr>
<td>Powder Factor (kg/m²)</td>
<td>0.14</td>
<td>0.191</td>
<td>0.223</td>
<td>0.266</td>
<td>0.293</td>
</tr>
<tr>
<td>Boulder 50 cm</td>
<td>45.28</td>
<td>35.60</td>
<td>29.21</td>
<td>20.28</td>
<td>14.05</td>
</tr>
</tbody>
</table>

Gambar-5. Grafik Rancangan Perbaikan Jumlah Isian Lubang Geometri 8 x 9

Gambar-6. Grafik Rancangan Perbaikan Powder Factor Geometri 8 x 9
KESIMPULAN
Berdasarkan hasil penelitian dan pembahasan mengenai geometri peledakan batubara pada PT Pamapersada Nusantara, maka dapat diambil beberapa kesimpulan antara lain:
1. PT Pamapersada Nusantara dalam peledakan batubara menggunakan dua pilihan untuk burden dan spasi yaitu 7 m x 8 m dan 8 m x 9 m, dengan tinggi jenjang 6 m sampai 6.8 m dan isian bahan peledak perlubang 47.04 kg/m³ sampai 74.2 kg/m³.
2. Geometri peledakan batubara yang digunakan oleh PT Pamapersada Nusantara masih belum optimum yang ditunjukkan dari ukuran fragmentasi hasil peledakan. Yang mana dengan geometri yang digunakan oleh perusahaan masih berpotensi menimbulkan big coal (≥50 cm), yang terdapat dari tingginya persentase boulder ukuran 50 cm atau rata-rata 44,84% dari lima lokasi peledakan yang diteliti.
3. Perancangan untuk perbaikan geometri untuk masalah yang dihadapi adalah melakukan perbaikan pada stemming, panjang kolom isian, isian bahan peledak serta powder factor.

SARAN
Saran yang diberikan sesuai apa yang diaman di lapangan, antara lain:
1. Dalam proses prepare lokasi blasting diharapkan para geologist mengingatkan kepada operator WD untuk melakukan spreading bukan dozing, mencegah coal loosen.
2. Pengecekan dengan seksama terhadap perlengkapan peledakan.
3. Pembersihan unit yang bekerja pada proses peledakan batubara.
4. Jarak pengisian selang dari lubang dapat diperhatikan lagi, harapan agar bahan peledak tidak bercocor dan membuat kontaminasi.

DAFTAR PUSTAKA