STUDI KETERDAPATAN BIJIH KROMIT PADA ENDAPAN LATERIT DI KECAMATAN KARANG INTAN, KABUPATEN BANJAR, PROVINSI KALIMANTAN SELATAN

Akhmad Rezni Ilhami*, Nurhakim*, Riswan*
*Program Studi Teknik Pertambangan, Fakultas Teknik, Universitas Lambung Mangkurat
Email: *akhmad.reznihilhami@gmail.com

ABSTRAK
Kromit (FeCr2O3) adalah satu-satunya mineral yang dapat digunakan menjadi sumber logam kromium. Kromit bisa terbentuk sebagai endapan primer, yaitu sebagai cebakan stratiform dan podiform, atau sebagai endapan sekunder berupa pasir hitam dan juga tanah laterit. Keterdapatian kromit di Indonesia lebih sedikit jika dibandingkan negara-negara lain di dunia seperti Kazakhstan, Turkey, Kanada, Afrika Selatan, Finland, Brazil, India, dan Zimbabwe. Meskipun demikian, potensi kromit di Indonesia cukup besar, hal ini dilihat karena kromit terbentuk pada batuan induknya yaitu ophiolit, sedangkan penambangan ophiolit di Indonesia diperkirakan lebih dari 80 ribu km².

Metode dalam penelitian ini berdasarkan pada metode perhitungan aktual lapangan yang bertujuan untuk mendapatkan hasil pada waktu sekarang. Proses meneliti masalah yaitu menggunakan metode komputasi dan analisa data - data berupa peta, gambar, dan tabel yang dapat membantu dalam penyampaian informasi hasil penelitian.

Dari penelitian tersebut hasil yang didapatkan dari pengujian laboratorium yang menggunakan metode X-Ray Fluoresensi (XRF) di Laboratorium Dinas Pertambangan dan Energi Provinsi Kalimantan Selatan, kandungan Cr tertinggi terdapat pada TA-01 B dengan persentase 2,42%, dan yang terendah terdapat pada TA-03 B dengan persentase 0,68%.

Kata-kata kunci: Kromit, Laterit, X-Ray Fluoresensi

PENDAHULUAN
Kromit (FeCr2O3) adalah satu-satunya mineral yang dapat digunakan menjadi sumber logam kromium. Kromit biasa terbentuk sebagai endapan primer, yaitu tipe cebakan stratiform dan podiform, atau sebagai endapan sekunder berupa pasir hitam dan juga tanah laterit (Pusat Penelitian dan Pengembangan Teknologi Mineral dan Batubara, 2005).

Potensi kromit di Indonesia lebih sedikit dibandingkan negara-negara lain di dunia seperti Kazakhstan, Turkey, Kanada, Afrika Selatan, Finland, Brazil, India, dan Zimbabwe. Meskipun demikian, potensi kromit di Indonesia cukup besar, hal ini dilihat karena kromit terbentuk pada batuan induknya yaitu ophiolit, sedangkan penambangan ophiolit di Indonesia diperkirakan lebih dari 80 ribu km².

Hal di atas melatarbelakangi dilaksanakannya penelitian dengan judul ‘Studi Keterdapatian Bijih Kromit pada Endapan Laterit di Kecamatan Karang Intan, Kabupaten Banjar Provinsi Kalimantan Selatan’ ini.

METODOLOGI
Metode dalam penelitian ini adalah metode perhitungan aktual lapangan yang bertujuan untuk mendapatkan hasil pada waktu sekarang. Rencana kegiatan penelitian ini dibagi menjadi 4 kegiatan yaitu persiapan, pengumpulan data, pengolahan data, dan penyusunan laporan akhir.

Tahap Persiapan
Tahap ini meliputi pelaksanaan perencanaan oleh tim peneliti. Tujuan utama dari studi pendahuluan ini adalah gambaran umum daerah penelitian. Studi literatur ini dilakukan dengan cara mencari beberapa bahan-bahan pustaka yang menunjang kegiatan penelitian ini, yang diperoleh dari:

a. Instansi terkait
b. Perpustakaan
c. Tabel
d. Informasi penunjang lainnya

2. Pengamatan Lapangan
Pengamatan lapangan dilakukan untuk melihat langsung kondisi lapangan daerah penelitian dan mengumpulkan data-data lapangan.

3. Pengambilan Data
Pelaksanaan untuk mendapatkan data diperlakukan dari jaga bergabung sumber dalam proses penyusunan skripsi.

4. Pengelompokan Data
a. Mengumpulkan serta mengelompokkan data agar lebih mudah dianalisis.
b. Mengetahui keakuratan pada data sehingga kerja menjadi lebih efisien.
c. Mengolah nilai karakteristik dari data-data yang mewakili objek pengamatan.

5. Pengolahan Data
Dilakukan dengan cara melakukan beberapa perhitungan serta pengamalan baran, selanjutnya dimuat dalam bentuk grafik, table atau perhitungan penyelesaian.

6. Kesimpulan
Didapatkan setelah melakukan korelasai antara hasil pengolahan dan permasalahan yang diteliti. Kesimpulan adalah hasil akhir dari semua masalah yang dibahas.

Teknik Pengumpulan Data
Proses pengumpulan data dilakukan dengan beberapa proses kegiatan. Hal ini bertujuan untuk memperoleh data yang benar - benar representatif yang dapat dimanfaatkan dalam penelitian ini. Adapun tahapan pengumpulan data adalah sebagai berikut:
1. Pengumpulan Data Sekunder
 Pengumpulan data sekunder merupakan proses kegiatan mempelajari, mengumpulkan dan membaca berbagai sumber pustaka yang bersifat menunjang atau memperkukuh landasan teori, sebagai dasar penelitian maupun sebagai referensi. Data sekunder yang diperoleh berupa peta geologi, peta RBI, penelitian terdahulu dan tabel.
2. Pengumpulan Data Primer
 Pengumpulan data primer dilakukan langsung dilapangan, yang dimana data berupa kegiatan survei di lapangan dan pengujian sampel di laboratorium. Kegiatan survey menghasilkan data berupa sampel bijih kromit, koordinat sampel, deskripsi geologi, serta data hasil tracking lintasan.

Instrumentasi
 Instrumentasi merupakan peralatan yang dapat digunakan selama penelitian yang dapat membantu dalam pengambilan data di lapangan. Instrumentasi yang digunakan pada penelitian ini adalah sebagai berikut:
 1. Kamera Digital
 2. Global Positioning System
 3. Palu Geologi
 4. Kompas Geologi
 5. Kantong Sampel dan Label

Teknik Pengolahan dan Analisa
 Setelah data - data diperoleh semua, kemudian dilanjutkan kegiatan proses analisis data. Proses analisis data juga dibagi menjadi beberapa tahapan, yaitu:
 1. Pengolahan Data
 Data yang telah dikumpulkan berupa hasil observasi lapangan dan uji laboratorium bijih kromit yang kemudian dilakukan pengolahan data berupa pembuatan peta rencana lintasan, peta hasil tracking lintasan, peta titik sampling, peta blok prospek bijih kromit pada endapan laterit, rekam data lapangan dan deskripsi geologi lokasi penelitian.
 2. Analisa Data
 Hasil dari pengolahan data, digunakan untuk melakukan penganalisaan keterdapatan bijih kromit di daerah penelitian.

Hasil Akhir
 Hasil akhir yang dapat diambil selama proses penelitian akan dianalisa dan dibahas untuk mengetahui keterdapatana bijih kromit di daerah penelitian, kemudian didapatkan kesimpulan apabila data tersebut selesai dianalisa sehingga didapatkan suatu hasil yang mantinya akan disimpulkan dengan masalah yang diteliti.

HASIL PENGOLAHAN DATA
1. Peta Rencana Lintasan

Gambar-1. Peta Rencana Lintasan Peta RBI
Gambar-2. Peta Rencana Lintasan Peta Geologi
2. Hasil Observasi Lapangan

Hasil dari observasi lapangan ini didapatkan data berupa data hasil tracking lintasan, identifikasi daerah pengamatan, pengambilan titik koordinat, identifikasi singkapan secara megaskopis, kegiatan sampling, dan plotting koordinat ke dalam peta titik sampling.

a. Hasil Tracking Lintasan

Berdasarkan hasil observasi lapangan panjang lintasan yang dilalui selama kegiatan penelitian, yaitu lintasan 1 sepanjang 23 Km, lintasan 2 sepanjang 27 Km, lintasan 3 sepanjang 18 Km, dan lintasan 4 sepanjang 32Km. Dapat dilihat pada gambar-3 dan gambar-4.

![Gambar-3: Peta Hasil Tracking Lintasan Peta RBI](image)

![Gambar-4: Peta Hasil Tracking Lintasan Peta Geologi](image)

Peta hasil tracking lintasan, dibuat menggunakan peta dasar berupa peta Rupa Bumi Indonesia lembar Aranjo dan Martapura serta Peta Geologi Lembag 1712 Banjarmasin. Peta tersebut berisi tentang hasil tracking lintasan yang dilalui selama proses kegiatan observasi lapangan.

b. Geologi Lokasi Daerah Penelitian

Geologi lokal pada daerah penelitian secara garis besar dikaji datanya berdasarkan pada hasil pemetaan geologi regional yang dilakukan oleh N. Sikumbang dan R. Heryanto pada tahun 1994 dari Pusat Penelitian dan Pengembangan Geologi (PPPG) serta berdasarkan pada kegiatan observasi lapangan.

Geologi daerah penelitian diketahui terbentuk mulai dari zaman Jura Tengah hingga zaman Kuarter Holosen. Pada setiap zamannya, terbentuk beberapa kelompok-kelompok batuan yang disebut sebagai formasi batuan.

1) Stratigrafi

Keadaan stratigrafi pada lokasi penelitian diketahui berdasarkan Peta Geologi Lembag 1712 Banjarmasin dan berdasarkan hasil pengamatan observasi lapangan. Adapun stratigrafi daerah penelitian disusun oleh formasi batuan tertua pada peta geologi lembag Banjarmasin, yaitu berupa formasi batuan Ultramafik dan batuan Malihon yang berumur Jura Tengah-Akhir sedangkan formasi batuan termuda berupa formasi Alluvium yang berumur Kuarter Holosen. Formasi batuan yang berkembang di daerah penelitian dijelaskan, sebagai berikut:

a) Batuan Ultramafik (Mub)

b) Batuan Malihon (Mm)

Formasi batuan yang terdiri dari sekis horenblenda, sekis muskovit, filit, sekis klorit, dan sekis muskovit. Pada formasi batuan malihon ini di beberapa tempat di temukan singkapan mangan dan hematite. Sebaran formasi ini terdapat di bagian timur-barat daya daerah penelitian dengan satuan morfologi berupa perbukitan dan formasi ini berumur Jura.

c) Gabro (Mgb)

2) Struktur Geologi

3) Morfologi

Secara garis besar keadaan morfologi yang ditemukan pada lokasi penelitian digolongkan jadi 3 bagian, yaitu: morfologi pendataran bergelombang, morfologi perbukitan, dan morfologi pegunungan.
a) Satuan morfologi pendataran bergelombang tersebar di bagian barat-utara daerah penelitian. Secara umum, pada satuan morfologi dataran disini dapat juga dibagi menjadi beberapa jenis morfologi dataran kering dan juga dataran berair dengan aliran sungai yang permanen dan aliran utamanya berasal dari sungai Kiam kaman.

![Gambar-5. Foto Satuan Morfologi Pendataran Bergelombang](image)

b) Satuan morfologi perbukitan di wilayah penelitian berupa perbukitan bergelombang yang tersusun oleh batuan malihan dengan litologi dicirikan oleh keterdapatannya batusekis dan juga ditemukan endapan laterit.

![Gambar-6. Foto Satuan Morfologi Perbukitan](image)

c) Satuan morfologi pegunungan yang berkembang di daerah penelitian yaitu wilayah pegunungan Bobaris dengan penyusun batuannya berupa batuan ultramasif dan gabbro.

![Gambar-7. Foto Satuan Morfologi Pegunungan](image)

c. Kegiatan Sampling

Selama kegiatan sampling yang dilakukan didapatkan sampel endapan laterit sebanyak 26 sampel. Kординat titik sampling dapat dilihat pada gambar 8, dan peta sebaran titik sampling selama kegiatan observasi lapangan dapat dilihat pada gambar-8 dan gambar-9.

![Gambar-8. Peta Sebaran Titik Sampling Lintasan Peta RBI](image)

![Gambar-9. Peta Sebaran Titik Sampling Lintasan Peta Geologi](image)

Tabel-1. Titik Kordinat Sampling

<table>
<thead>
<tr>
<th>Nama Sampel</th>
<th>Titik Kordinat</th>
<th>Elevasi</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA-01</td>
<td>03° 32' 57.2" N, 114° 55' 01.6" E</td>
<td>55.4</td>
</tr>
<tr>
<td>TA-02</td>
<td>03° 32' 08.6" N, 114° 54' 45.1" E</td>
<td>54.2</td>
</tr>
<tr>
<td>TA-03</td>
<td>03° 32' 03.7" N, 114° 54' 48.9" E</td>
<td>66.5</td>
</tr>
<tr>
<td>TA-04</td>
<td>03° 31' 42.2" N, 114° 55' 33.0" E</td>
<td>79.9</td>
</tr>
<tr>
<td>TA-05</td>
<td>03° 31' 32.5" N, 114° 55' 29.3" E</td>
<td>89.4</td>
</tr>
<tr>
<td>TA-06</td>
<td>03° 30' 09.8" N, 114° 58' 44.2" E</td>
<td>39.7</td>
</tr>
<tr>
<td>TA-07</td>
<td>03° 30' 32.0" N, 114° 58' 53.1" E</td>
<td>46.5</td>
</tr>
<tr>
<td>TA-08</td>
<td>03° 29' 43.7" N, 114° 59' 00.6" E</td>
<td>47.2</td>
</tr>
<tr>
<td>TA-09</td>
<td>03° 31' 15.8" N, 114° 57' 15.4" E</td>
<td>377.9</td>
</tr>
<tr>
<td>TA-10</td>
<td>03° 33' 02.7" N, 114° 55' 31.2" E</td>
<td>62.3</td>
</tr>
<tr>
<td>TA-11</td>
<td>03° 33' 36.1" N, 114° 55' 04.3" E</td>
<td>95.0</td>
</tr>
<tr>
<td>TA-12</td>
<td>03° 33' 45.6" N, 114° 55' 03.6" E</td>
<td>78.9</td>
</tr>
<tr>
<td>TA-13</td>
<td>03° 34' 34.6" N, 114° 55' 02.3" E</td>
<td>156.1</td>
</tr>
<tr>
<td>TA-14</td>
<td>03° 33' 36.2" N, 114° 56' 03.4" E</td>
<td>156.8</td>
</tr>
<tr>
<td>TA-15</td>
<td>03° 32' 31.5" N, 114° 54' 59.1" E</td>
<td>89.0</td>
</tr>
<tr>
<td>TA-16</td>
<td>03° 34' 37.6" N, 114° 58' 30.6" E</td>
<td>95.5</td>
</tr>
<tr>
<td>TA-17</td>
<td>03° 35' 31.2" N, 114° 58' 01.4" E</td>
<td>134.7</td>
</tr>
<tr>
<td>TA-18</td>
<td>03° 36' 01.9" N, 114° 55' 53.1" E</td>
<td>164.9</td>
</tr>
<tr>
<td>TA-19</td>
<td>03° 36' 00.5" N, 114° 55' 47.1" E</td>
<td>177.4</td>
</tr>
<tr>
<td>TA-20</td>
<td>03° 35' 55.4" N, 114° 58' 37.6" E</td>
<td>130.3</td>
</tr>
<tr>
<td>TA-21</td>
<td>03° 36' 01.0" N, 114° 55' 57.1" E</td>
<td>189</td>
</tr>
<tr>
<td>TA-22</td>
<td>03° 36' 10.6" N, 114° 56' 33.2" E</td>
<td>152</td>
</tr>
<tr>
<td>TA-23</td>
<td>03° 36' 10.3" N, 114° 56' 32.3" E</td>
<td>155</td>
</tr>
<tr>
<td>TA-24</td>
<td>03° 34' 20.0" N, 114° 58' 35.3" E</td>
<td>164</td>
</tr>
<tr>
<td>TA-25</td>
<td>03° 32' 39.2" N, 114° 54' 48.1" E</td>
<td>56.3</td>
</tr>
<tr>
<td>TA-26</td>
<td>03° 32' 43.1" N, 114° 54' 52.0" E</td>
<td>52.2</td>
</tr>
</tbody>
</table>
d. Hasil Analisa Laboratorium

<table>
<thead>
<tr>
<th>No</th>
<th>Kode Sampel</th>
<th>Fe</th>
<th>Cr</th>
<th>Ni</th>
<th>Lol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TA-01-A</td>
<td>51.41</td>
<td>2.04</td>
<td>1.48</td>
<td>8.81</td>
</tr>
<tr>
<td>2</td>
<td>TA-01-B</td>
<td>51.13</td>
<td>2.42</td>
<td>1.25</td>
<td>7.56</td>
</tr>
<tr>
<td>3</td>
<td>TA-03-A</td>
<td>35.28</td>
<td>1.74</td>
<td>1.34</td>
<td>8.89</td>
</tr>
<tr>
<td>4</td>
<td>TA-03-B</td>
<td>17.21</td>
<td>0.68</td>
<td>0.56</td>
<td>5.00</td>
</tr>
<tr>
<td>5</td>
<td>TA-21</td>
<td>18.98</td>
<td>0.76</td>
<td>0.56</td>
<td>8.79</td>
</tr>
<tr>
<td>6</td>
<td>TA-22</td>
<td>22.52</td>
<td>0.89</td>
<td>0.51</td>
<td>5.44</td>
</tr>
<tr>
<td>7</td>
<td>TA-24</td>
<td>26.72</td>
<td>1.23</td>
<td>0.96</td>
<td>13.16</td>
</tr>
<tr>
<td>8</td>
<td>TA-25-A</td>
<td>47.87</td>
<td>2.18</td>
<td>1.38</td>
<td>9.09</td>
</tr>
<tr>
<td>9</td>
<td>TA-25-B</td>
<td>47.41</td>
<td>2.09</td>
<td>1.56</td>
<td>9.16</td>
</tr>
<tr>
<td>10</td>
<td>TA-25-C</td>
<td>46.98</td>
<td>1.99</td>
<td>1.57</td>
<td>8.99</td>
</tr>
<tr>
<td>11</td>
<td>TA-26-A</td>
<td>45.93</td>
<td>2.18</td>
<td>1.03</td>
<td>12.96</td>
</tr>
<tr>
<td>12</td>
<td>TA-26-B</td>
<td>48.72</td>
<td>2.06</td>
<td>1.22</td>
<td>9.43</td>
</tr>
<tr>
<td>13</td>
<td>TA-26-C</td>
<td>44.47</td>
<td>1.89</td>
<td>1.5</td>
<td>10.64</td>
</tr>
</tbody>
</table>

c. Profil Endapan Laterit di Daerah Penelitian

Profil endapan laterit pada daerah penelitian dibagi menjadi beberapa zona gradasi, yaitu sebagai berikut:
1) Iron Capping
2) Limonite Layer
3) Saprolite
4) Bedrock

f. Keterdapatkan Kromit di Daerah Penelitian

Kromit di daerah penelitian dapat ditemukan dalam batuan basa hingga ultrabasa (batuan gabro dan peridotite) yang sebagian besar telah mengalami proses serpentinisasi dan pelapukan, kandungan bijih kromit yang ditemukan di daerah ini rata-rata 2%. Sedangkan pada batuan malih (batuan serpentinite) kromit dapat ditemukan dengan kadar kurang dari 1%.

Hubungan Antara Kondisi Geologi Daerah Penelitian Terhadap Keterdapatkan Biji Kromit Pada Endapan Laterit

1. Formasi batuan daerah penelitian

Formasi batuan di daerah penelitian didominasi oleh formasi batuan gabro, ultrabasa, dan batuan malih. Pada formasi batuan basa hingga ultrabasa ditemukan batuan gabro dan peridotite yang sebagian besar telah mengalami proses serpentinisasi dan pelapukan yang menyebabkan terbentuknya endapan laterit. Dapat dilihat pada gambar-11.

Adapun pada formasi batuan malih ditemukan batuan serpentinite yang berwarna kehijauan yang berasosiasi dengan endapan laterit dimana pada endapan laterit tersebut mengandung bijih kromit kurang dari 1% hal ini disebabkan karena pada formasi batuan malih didominasi oleh batuan sekis, fillit, dan kuarsit.

Gambar-11. Peta Geologi Daerah Penelitian

2. Keadaan morfologi daerah penelitian

Keterdapatkan bijih kromit pada endapan laterit di daerah penelitian lebih dominan ditemukan pada keadaan morfologi perbukitan berelambang hal ini disebabkan endapan laterit mengalami proses transportasi kedaerah yang lebih rendah.

Blok Prospek

1. Blok Prospek A

Blok Prospek A terdapat di bagian utara daerah penelitian dapat dilihat pada gambar 12, dengan luas diperkirakan 3268 Ha. Kondisi morfologi dari Blok Prospek A didominasi satuan morfologi perbukitan berelambang, dengan elevasi bervarian antara 39 - 377 mdpl. Adapun kemiringan lereng berkisar antara 15% - 140%. Ketebalan endapan laterit di blok Prospek A berkisar 1 - 2,5m. Dari hasil analisa laboratorium, kadar logam di Blok Prospek A adalah berkisar antara Fe 17,21% - 51,41%, Cr 0,68% - 2,42%, dan Ni 0,56% - 1,58%.

Gambar-12. Blok Prospek A
2. Blok Prospek B

Blok Prospek B terdapat di bagian selatan daerah penelitian dapat dilihat pada gambar 13, dengan luasan diperkirakan 3264 Ha. Kondisi morfologi dari Blok Prospek B didominasi satuan morfologi perbukitan, dengan elevasi bervariasi antara 78 - 189 mdpl. Adapun kemiringan lereng berkisar antara 7% - 70%. Ketersediaan endapan laterit di blok Prospek B berkisar 0,5 - 1,5 m. Dari hasil analisa laboratorium, kadar logam di Blok Prospek B adalah berkisar antara Fe 18,98% - 26,72%; Cr 0,76% - 1,23%; dan Ni 5,44% - 13,16%.

Gambar-13. Blok Prospek B

KESEMPOLAN

Kesimpulan dari hasil penelitian ini dapat ditarik menjadi beberapa poin, yaitu sebagai berikut:

1. Menurut hasil uji laboratorium Dinas Pertambangan dan Energi Provinsi Kalimantan Selatan, kandungan yang terdapat pada endapan laterit di daerah penelitian memiliki kandungan berkisar antara Fe 17,21% - 51,41%; Cr 0,67% - 2,42%; dan Ni 0,31% - 1,58%.

3. Hubungan antara kondisi Geologi daerah penelitian terhadap keterdapatannya bijih kromit pada Endapan Laterit.

a. Formasi batuan di daerah penelitian didominasi oleh formasi batuan gabbro, ultrabasus, dan batuan malian. Pada formasi batuan basis hingga ultrabasus, yang menyebabkan terbentuknya endapan laterit dimana pada endapan laterit tersebut ditemukan kandungan bijih kromit rata-rata 2%

b. Sedangkan pada formasi batuan malian ditemukan batuan serpentinite yang berwarna kehijauan yang berasosiasi dengan endapan laterit dimana pada endapan laterit tersebut mengandung bijih kromit kurang dari 1% hal ini disebabkan karena pada formasi batuan malian didominasi oleh batuan sekis, fillit, dan kuarzet.

b. Keterdapatannya bijih kromit pada endapan laterit di daerah penelitian lebih dominan ditemukan pada keadaan morfologi perbukitan bergelombang hal ini disebabkan endapan laterit mengalami proses transportasi kedua rong yang lebih rendah.

DAFTAR PUSTAKA

