PENGARUH SUHU PEMANASAN PADA UPGRADING BATUBARA DENGAN PENAMBAHAN PFAD TERHADAP PERILAKU PEMBAKARAN BATUBARA

RR. Yunita Bayu Ningsih1, Jr. Harminuke Eko Handayani2, Diana Purbasari3, Muhammad Fadhill4

1,2Jurusan Teknik Pertambangan Fakultas Teknik Universitas Sriwijaya
e-mail:*1y.bayuningsih@gmail.com, 2harminuke@yahoo.com, 3diana_purbasari@yahoo.com, 4fadhillmfd08@gmail.com

ABSTRAK
Penambahan Palm Fatty Acid (PFAD) pada proses upgrading batubara berfungsi sebagai coating batubara. Adanya coating ini akan menyebabkan batubara tidak mudah menyerap air kembali sehingga kualitas batubara dapat terjaga. Penambahan PFAD ini akan berpengaruh terhadap karakteristik batubara tersebut. Penelitian ini bertujuan untuk mengetahui pengaruh suhu pemanasan yang digunakan pada proses upgrading batubara dengan penambahan PFAD terhadap karakteristik pembakaran. Penelitian ini dilakukan dengan perlakuan 5 oleh 5 yaitu 5 suhu 100°C, 150°C, 200°C, 250°C dan 300°C. Hasil penelitian menunjukkan bahwa suhu pemanasan yang berbeda akan menghasilkan perbedaan perilaku pembakaran yang berbeda pula. Hasil penelitian ini menunjukkan bahwa batubara yang ditambahkan PFAD dan yang telah dipanaskan pada suhu 200°C memiliki perilaku pembakarannya yang paling baik dimana batubara tersebut memiliki waktu awal penyalaan 16,5047 menit dengan laras pembakaran adalah 3,133 menit.

Kata-kata kunci: Batubara, Palm Fatty Acid Distillation, Perilaku Pembakaran, Kualitas Batubara

PENDAHULUAN

Disamping itu, pemanasan juga akan berpengaruh terhadap karakteristik pembakaran batubara. Menurut Subroto (2017) tingginya air didalam batubara akan membuat batubara sulit dinyalakan dan menyebabkan temperatur pembakaran menjadi rendah. Perbedaan suhu pemanasan yang berbeda pada proses upgrading batubara mempengaruhi akan menghasilkan perilaku pembakaran batubara yang berbeda pula. Berdasarkan hal tersebut maka pada penelitian ini akan diuji pengaruh suhu pemanasan terhadap perilaku pembakaran batubara hasil upgrading dengan penambahan PFAD.

METODOLOGI
Penelitian ini menggunakan bahan baku batubara kualitas rendah yang berasal dari PT Baturana Adimulya, Musi Banyuasin, Sumatera Selatan dan Palm Fatty Acid Distillation (PFAD). Karakteristik batubara raw dapat dilihat pada tabel 1.

<table>
<thead>
<tr>
<th>No</th>
<th>Parameter Kualitas</th>
<th>Nilai</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inherent Moisture</td>
<td>28.88</td>
</tr>
<tr>
<td>2</td>
<td>Abu (%)</td>
<td>4.68</td>
</tr>
<tr>
<td>3</td>
<td>Zat Terbangan (%)</td>
<td>32.21</td>
</tr>
<tr>
<td>4</td>
<td>Karbon Tertambat (ad)</td>
<td>34.27</td>
</tr>
<tr>
<td>5</td>
<td>Nilai Kalori (kal/g)</td>
<td>4311</td>
</tr>
</tbody>
</table>

Penelitian ini merupakan penelitian skala laboratorium. Penelitian diawali dengan preparasi sample batubara yaitu crushing dan grinding, lalu dilakukan pengayakan untuk mendapat ukuran -30+50 mesh.

Sample batubara dengan ukuran yang telah ditentukan selanjutnya dicampur dengan PFAD sebesar 12%. Proses pencampuran dilakukan sedemikian rupa sehingga batubara dan PFAD dapat tercampur rata. Campuran batubara dan PFAD tersebut lalu dicetakdalam bentuk briket. Briket yang telah dicetak selanjutnya dipanaskan dengan lima variasi suhu yaitu 100°C, 150°C, 200°C, 250°C dan 300°C. Proses pemanasan ini dilakukan untuk mengurangi kandungan moisture didalam batubara. Batubara peringkat rendah memiliki nilai kalori yang rendah karena kandungan moisture nya yang tinggi,

Jurnal GEOSAPTA Vol. 4 No.1 Januari 2018 55
sehingga pengurangan moisture juga akan berpengaruh terhadap kenaikan nilai kalori batubara. Sample batubara selanjutnya dilakukan analisis proximate dan uji pembakaran. Analisis tersebut dilakukan untuk mengetahui pengaruh suhu pemanasan dengan penambahan PFAD terhadap perilaku pembakaran batubara.

Gambar-1. Bagan Alir Penelitian

HASIL DAN PEMBAHASAN

Pada pengujian pembakaran dengan menggunakan alat TGA akan didapatkan titik-titik temperatur penting pada saat pembakaran yaitu Volatile matter Initiation Temperature (ITVM) yang merupakan temperatur pembakaran dimana massa mulai berkurang, yang kedua adalah Fix Carbon Initiation Temperature (ITFC) yaitu temperatur saat massa mulai berkurang dengan cepat, selanjutnya adalah temperatur saat mengalami pembakaran massa terbesar atau disebut dengan Peak Temperature (PT), dan temperatur akhir pembakaran saat massa yang terbakar mulai konstan atau Burning Temperature (BT) (Silaban dkk., 2016). Selain itu, uji pembakaran juga dilakukan untuk mengetahui waktu yang dibutuhkan untuk penyalaan awal batubara dan bertapa lama waktu proses pembakaran terjadi.

Hasil uji pembakaran dari masing-masing suhu pemanasan dapat dilihat pada Gambar-2 sampai Gambar-6.

Gambar-2. Perilaku Pembakaran Sample P-100

Gambar-2 menunjukkan perilaku pembakaran sample P-100. Sample P-100 adalah sample yang setelah dicampur dengan PFAD, lalu dilakukan proses pemanasan pada suhu 100°C. melalui uji TGA dapat diketahui bahwa batubara yang telah ditambahkan PFAD dan dipanaskan pada suhu 100°C memiliki waktu penyalaan awal pada18.94583 menit awal pembakaran dan lama proses pembakaran adalah selama 1.79170 menit. Dari grafik diatas juga dapat dikelihat ITVM pada 225.5837°C, ITFC pada suhu 296.1443°C, PT pada suhu 247.364°C, dan BT pada 258.5877°C.

Gambar-3 merupakan grafik pembakaran sample P-150. Sample P-150°C adalah sample yang dilakukan proses pemanasan dengan suhu 150°C yang sebelumnya telah ditambahkan PFAD. Pada grafik terlihat proses pengerengan batubara, dimana massa turun secara perlahan sampai suhu 222.7714°C dengan waktu 17.55417 menit. Waktu tersebut juga merupakan waktu yang dibutuhkan untuk mencapai titik penyalaan awal pembakaran. Setelah mencapai titik penyalaan awal, terjadi lonjakan suhu secara cepat yang disebabkan oleh volatile matter yang terbakar diiringi dengan fix carbon hingga tercapai temperatur akhir pembakaran dimana massa yang terbakar mulai konstan. Dari grafik DTA dapat dikelihat nilai ITVM, ITFC, PT, BT pada sample P-150. ITVM sebesar 215.7756°C, ITFCsebesar 278.78 °C, Peak Temperature pada 420,1184°C dan Burning Temperature sebesar 229,0749°C.

Berdasarkan Gambar-2 sampai Gambar-6 dapat terlihat suhu pemanasan pada proses *upgrading* batubara dengan menggunakan PFAD berpengaruh terhadap perilaku pembakaran. Hasil penelitian menunjukkan bahwa setiap sample yang dipanaskan pada suhu tertentu memiliki waktu penyalakan awal dan lamanya penyalakan yang berbeda-beda. Tabel -2 menunjukkan perbedaan waktu penyalakan awal dan lamanya penyalakan pada masing-masing suhu pemanasan pada proses *upgrading* batubara dengan menggunakan PFAD.

Waktu penyalakan dan lamanya penyalakan dipengaruhi oleh kandungan moisture dan volatile matter yang terkandung didalam batubara. Tabel-3 menunjukkan besarnya moisture dan volatile matter yang terkandung didalam batubara.

<table>
<thead>
<tr>
<th>No</th>
<th>Suhu</th>
<th>Waktu Penyalakan Awal (menit)</th>
<th>Lamanya Pembakaran (menit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100°C</td>
<td>18,94583</td>
<td>1,79170</td>
</tr>
<tr>
<td>2</td>
<td>150°C</td>
<td>17,55417</td>
<td>2,30833</td>
</tr>
<tr>
<td>3</td>
<td>200°C</td>
<td>16,50417</td>
<td>3,13333</td>
</tr>
<tr>
<td>4</td>
<td>250°C</td>
<td>17,68750</td>
<td>2,50</td>
</tr>
<tr>
<td>5</td>
<td>300°C</td>
<td>18,80417</td>
<td>2,83333</td>
</tr>
</tbody>
</table>

Hasil penelitian ini juga menunjukkan bahwa batubara dengan penambahan PFAD yang dipanaskan pada suhu 100°C memiliki waktu pemanasan atau pembakaran yang paling cepat. Lamanya pembakaran dipengaruhi oleh kandungan *fixed carbon*, struktur dan kekerasan bahan (Jamilatun, 2008). Berdasarkan tabel-3 dapat diketahui bahwa sample P-100 memiliki kandungan *fixed carbon* yang paling rendah. Hal inilah yang menyebabkan batubara dengan penambahan PFAD yang dipanaskan pada suhu 100°C memiliki waktu pembakaran yang paling singkat.

Berdasarkan tabel-2, bahwa pada suhu 150°C waktu penyalakan awal sedikit lebih cepat dan lamanya penyalan yang sedikit meningkat. Hal ini disebabkan kandungan moisture pada batubara tersebut lebih rendah dan kandungan fixed carbonnya sedikit lebih tinggi.

Pada sample P-200 memiliki kandungan volatile matter yang lebih tinggi dibandingkan dengan sample lainnya. Zat terbanyak adalah hasil penguraian senyawa kimia dan campuran kompleks pembentuk batubara (Sudarsono A, 2003). Zat terbanyak senyawa kimia yang terdapat pada batubara tersebut bisa berasal dari pembentukan batubara ataupun dari penambahan zat aditif. Dalam penelitian ini zat aditif yang ditambahkan adalah PFAD.

KESIMPULAN

Adapun kesimpulan dari penelitian ini adalah sebagai berikut:

1. Suhu pemanasan pada proses *upgrading* batubara dengan penambahan PFAD dapat berpengaruh terhadap perilaku pembakaran batubara.
2. Waktu penyalakan paling cepat adalah 16,50417 menit pada suhu pemanasan 200°C dan waktu yang paling lama adalah 18,94583 menit pada suhu pemanasan 100°C.
3. Waktu pembakaran paling baik adalah 3,13333 menit pada suhu pemanasan 200°C dan yang paling cepat adalah 1,79170 menit pada suhu pemanasan 100°C.
4. Suhu pemanasan yang paling optimum pada proses *upgrading* batubara dengan penambahan PFAD yang memberikan perilaku pembakaran paling baik adalah pada suhu 200°C.
DAFTAR PUSTAKA

