National Seminar PSMTS: Challenges and Innovations in Nusantara Capital City (IKN) Infrastructure Development in Clay Shale Land Using BIM

Technology as Support, Universitas Lambung Mangkurat, 28 October 2023

Green transportation infrastructure materials for Infrastructure Development

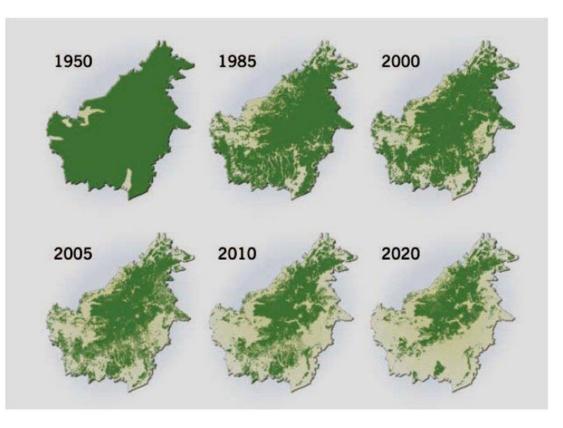
2005

2010

2020

Iswandaru Widyatmoko

Technical Director for Infrastructure and Materials Research, AECOM Europe


Outline

Definition of green transportation infrastructure

Asphalt materials produced by green technology

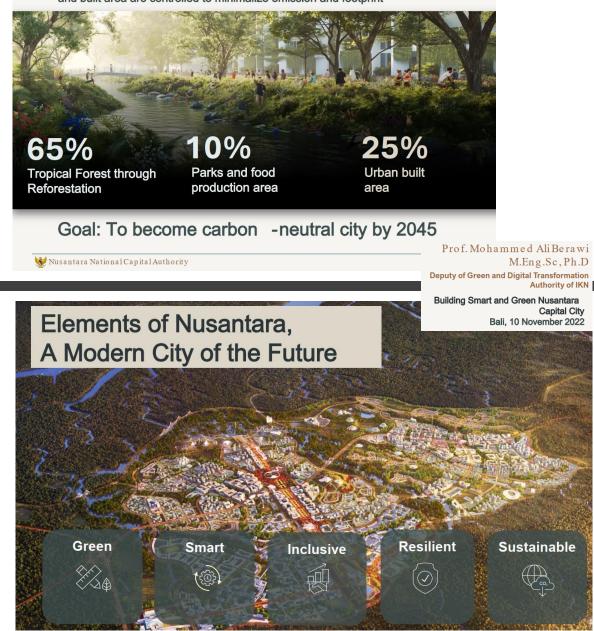
Research on waste and secondary materials

Urban drainage systems

Green Transportation Infrastructure

- Roadway design that integrates transportation functionality and ecological sustainability
- An environmental approach is used throughout the planning, design, and the construction
- The result is a highway that will benefit transportation, the ecosystem, urban growth, public health and surrounding communities

Green Technology


What is green technology

- Green technology describes the use of technology and science to create products that are more environmentally friendly.
- The goal is to protect the environment and in some cases, to even repair past damage done to the environment

Nusantara: Sustainable Forest City

Tropical forest are preserved as a carbon sink and built area are controlled to minimalize emission and footprint

Nusantara: Smart City

Dynamic, inclusive, and ready for the future: A city supported by technology as the accelerator to increase productivity and life quality

Green infrastructure materials

Ы

П

✓ Climate resilient materials✓ Sustainable urban drainage

The challenges

12

H

田

H

胃

H

日日

日

胃

H

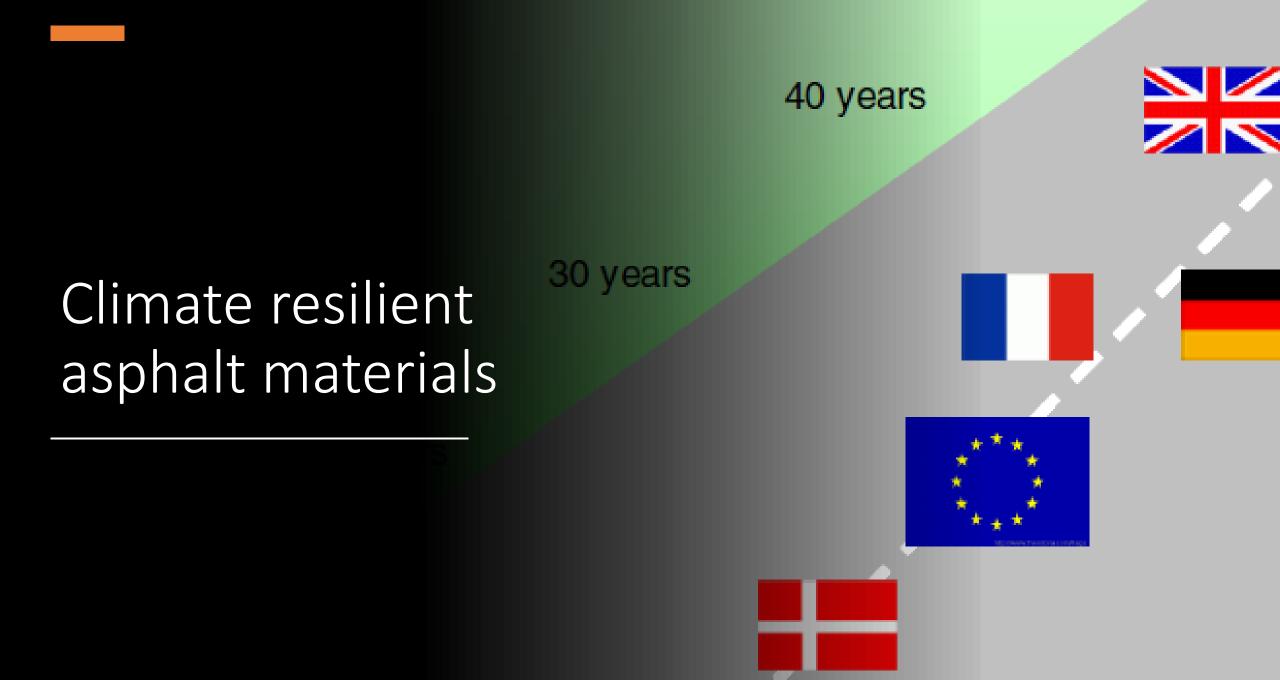
F

Kecamatan Sepaku, Kalimantan Timur, Indonesia JI. Negara No.1, Sepaku, Kec. Sepaku, Kabupaten Penajam Paser Utara, Kalimantan Timur 76147, Indonesia Lat -0.906859°

JI. Negara

Expansive Soil

- Clay: a fine-grained soil
- Prone to large volume changes
 →Changes in water content
- Smectite clay minerals have the most dramatic shrink-swell capacity
- Magnitude of expansive, soil-related movements varies based on geologic and climatic conditions
 - Varies with depth of seasonal moisture change
 - Deeper cracks in drier seasons
 - Site drainage
 - Moisture control during and after construction



MCKINNEY Unique by Mature.

Expansive Clay Movement Mitigation Methods

- Partial over-excavation and select fill replacement
- Chemical injection
- Moisture conditioning/water injection
- Lime-slurry injection
- Cement/lime/fly ash stabilization
- Surcharging
- Moisture barriers (horizontal and/or vertical)
- Hybrid systems

Long-life (durable) asphalt materials

- Asphalt materials are "live" products, subject to changes
- Resistance against degradation in service, due to changes in chemical-mechanical properties
- What causes these changes:
 - Thermal? Hot, cold, frost
 - Loss of volatile components?
 - Moisture?
 - Winter maintenance?
- What is the biggest challenge in the mixture design?

Page 12

Senin, 03 Mei 2021 11:15

Angkutan Berat Hancurkan Jalan Kuala Kurun-Palangka Raya

Truk Terperosok, Antrean Mengular

TERPEROSOK: Truk dengan bermuatan berat terperosok di tengah jalan raya, sehingga mengakibatkan antrean panjang di Desa Tanjung Karitak, Kecamatan Sepang, ruas Palangka Raya -Kuala Kurun.(WARGA FOR RADAR SAMPIT)

Selasa, 26 April 2022 21:51

Jalan Kurun-Palangka Raya Kembali Rusak

Editor - DPRD Gunung Mas, Gunung Mas, Kalimantan Tengah - 1,047 Views

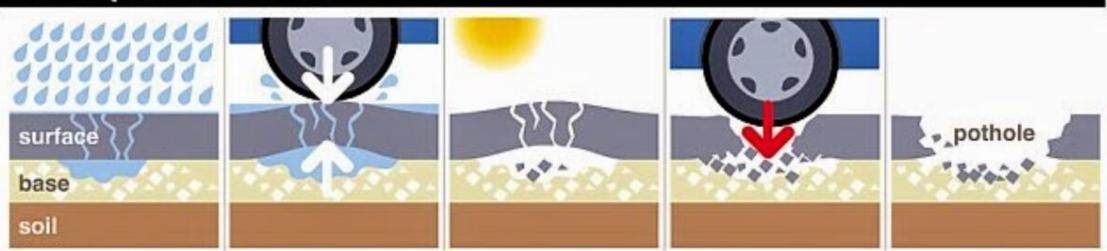
Kendaraan truk angkutan terjadi macet di jalan trans Kalimantan di Desa Teluk Nyatu, Kecamatan Kurun Kabupaten Gumas, Senin (25/4/2022). (foto: Heriyadi)

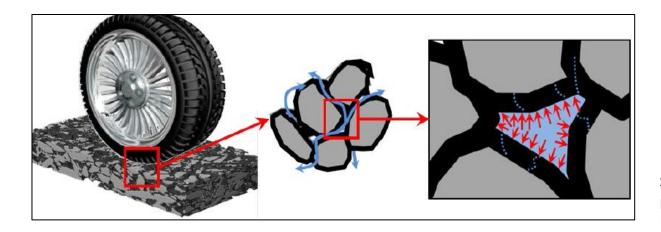
Dimana akar permasalahan nya?

Lapisan aspal mengelupas

Musuh utama perkerasan jalan

- Air
-Air
-Air


Drainase tidak memadai?



Masalah desain? Pembebanan berlebih? Drainase?

Moisture and Traffic

How a pothole forms

- ✓ Moisture diffusion
 ✓ Advective transport
 ✓ Wheel loading
- ✓ Pumping action agg

Degradation of the **cohesive strength** of the asphalt binder

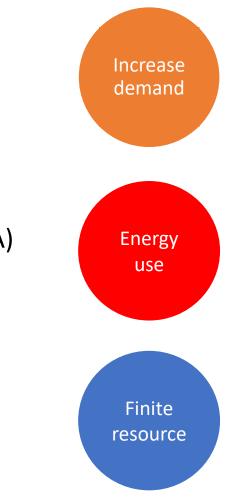
Loss of the adhesion bond between aggregate & asphalt binder

Solaimanian, M., Harvey, J., Tahmoressi, M., Tandon, V. "Test methods to predict moisture sensitivity of hot-mix asphalt pavements." Transportation Research Board National Seminar. San Diego, California. 2003

Asphalt materials produced by green technology

Different approaches to greener asphalt technology

□Use of longer-life materials

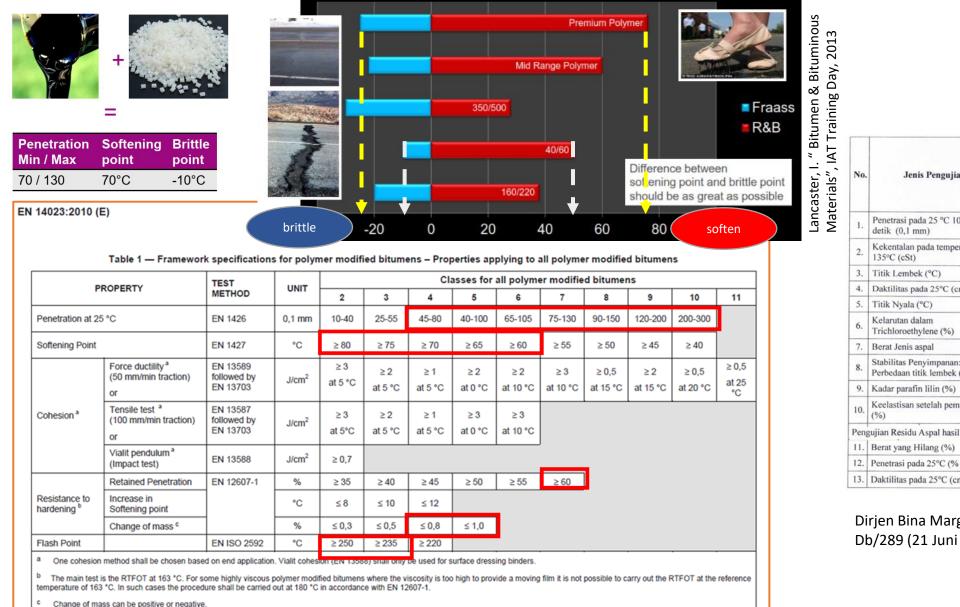

- ✓ Current technology: polymer modified asphalts
- Future development: self-healing materials

□Low energy construction

- Current technology: low temperature asphalts (WMA, HWMA, CMA)
- Future development: bio-based (plant-based) binders

□Use of waste and secondary materials

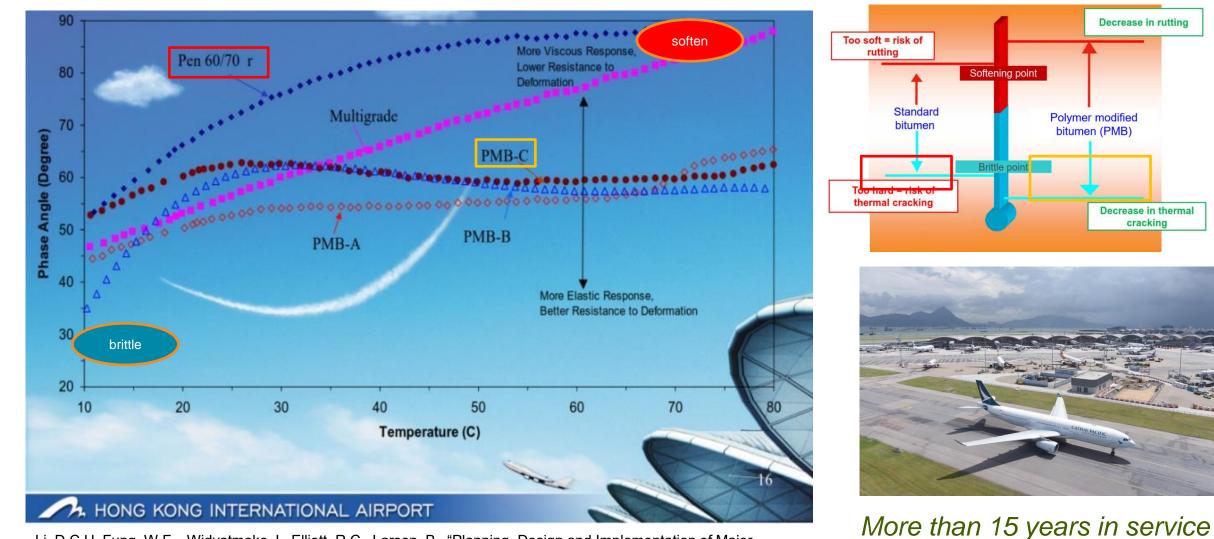
□ Reclaim, reuse and recycling



Polymer Modified Asphalt (PMA) to improve service life

Type of modifier	Example				Potential Increase In-		
Thermoplastic elastomers	Styrene–butadiene–styrene (SBS) Styrene–butadiene–rubber (SBR)	Site Feature		Condition Description	Service Life attributed to		
	Styrene-butadiene-rubber (SBR) Styrene-isoprene-styrene (SIS)				the use of a PMB in Years ¹		
	Styrene–ethylene–butadiene–styrene (SEBS) Ethylene–propylene–diene terpolymer (EPDM)	Water Table	5	Shallow; adequate drainage	5-8		
	Isobutene–isoprene copolymer (IIR) Natural rubber	Depth/Drainage	S	hallow; inadequate drainage	0-2		
	Crumb tyre rubber			Stop and Go/Intersections	5-10		
	Polybutadiene (PBD) Polyisoprene		Low	Thoroughfares	3-6		
hermoplastic polymers	Ethylene vinyl acetate (EVA)	Traffic		Heavy loads/Special containers	5-10		
	Ethylene methyl acrylate (EMA) Ethylene butyl acrylate (EBA)			Moderate Volumes	5-10		
Atactic polypropylene (ÀPP) Polyethylene (PE) Polypropylene (PP) Polyvinyl chloride (PVC) Polystyrene (PS) Thermosetting polymers Epoxy resin Polyurethane resin Acrylic resin Phenolic resin			High Volumes		5-10		
	Polypropylene (PP) Polyvinyl chloride (PVC)			Hot	5-10		
		Climate	Mild		2-5		
			Cold		3-6		
	Acrylic resin	Existing Pavement		Good condition	5-10		
	Phenolic resin	Condition	HMA	Poor condition; extensive cracking ²	1-3		
hemical modifiers	Organo-metallic compounds Sulphur	Condition		Good condition ²	3-6		
	Lignin	Notes:					
ibres	Cellulose	Ŭ		ice life is based on the mechanistic-er	mpirical damage-based analyses,		
	Alumino-magnesium silicate Glass fibre	comments from the experts and engineering judgment.Without the use of any reflection cracking mitigation techniques.					
	Asbestos						
	Polyester						
	Polypropylene		6	ource: Asphalt Institute, IS-215			
Adhesion improvers	Organic amines Amides		30	Suice. Asphan institute, 13-215			
ntioxidants	Amines						
	Phenols Organo-zinc/organo-lead compounds						
atural asphalts	Trinidad Lake Asphalt (TLA)						
	Gilsonite Rock asphalt						
illers	Carbon black						
	Hydrated lime						
	Lime						
	Fly ash						

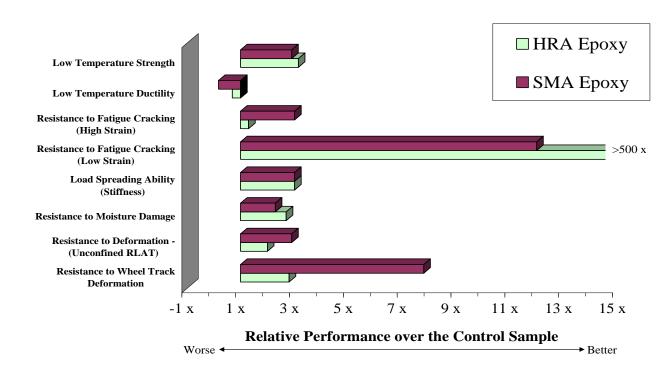
Source: Shell Bitumen Handbook

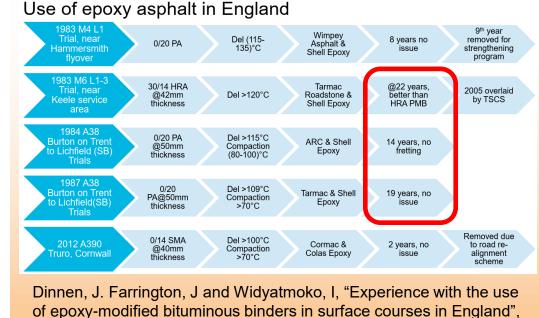

Polymer modified bitumen

			Tipe II Aspal yang Dimodifikasi
No.	Jenis Pengujian	Standar	C Elastomer Sintetis - wax
1.	Penetrasi pada 25 °C 100 gram, 5 detik (0,1 mm)	SNI 2456:2011	Min. 45
2.	Kekentalan pada temperatur 135°C (cSt)	ASTM D2170-10	Maks. 3000
3.	Titik Lembek (°C)	SNI 2434:2011	Min. 60
4.	Daktilitas pada 25°C (cm)	SNI 2432:2011	Min. 100
5.	Titik Nyala (°C)	SNI 2433:2011	Min. 232
6.	Kelarutan dalam Trichloroethylene (%)	ASTM D2042-01	Min. 99
7.	Berat Jenis aspal	SNI 2441:2011	Min. 1,0
8.	Stabilitas Penyimpanan: Perbedaan titik lembek (°C)	ASTM D5976 part 6.1 dan SNI 2434:2011	Maks. 2,2
9.	Kadar parafin lilin (%)	SNI 03-3639-2002	Maks. 2
10.	Keelastisan setelah pemulihan (%)	AASHTO T301-99	Min. 60
Peng	gujian Residu Aspal hasil TFOT (SN	VI 06-2440-1991) atau R	TFOT (SNI 03-
11.	Berat yang Hilang (%)	SNI 06-2440-1991	Maks. 0,8
12.	Penetrasi pada 25°C (% asli)	SNI 2456:2011	Min. 65
13.	Daktilitas pada 25°C (cm)	SNI 2432:2011	Min 75

Dirjen Bina Marga. Spek Interim No: KB 01.13-Db/289 (21 Juni 2016)

Successful application of PMA (thermoplastic elastomer) for runway surfacing, for durability and climate resilience




Li, D.C.H, Fung, W.F., Widyatmoko, I., Elliott, R.C., Larsen, B., "Planning, Design and Implementation of Major Runway Resurfacing at Hong Kong International Airport", Sixth International Conference on Road & Airfield Pavement Technology (6th ICPT), 20-23 July 2008, Sapporo, Japan Page 20

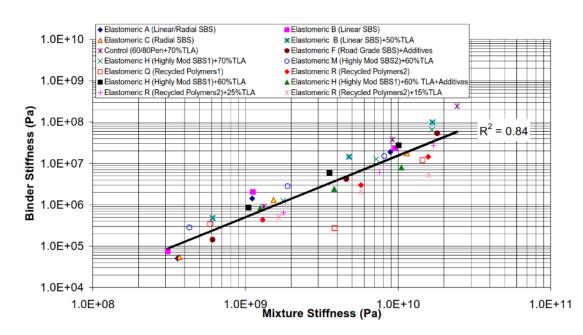
and still performing well

AECOM

PMA (thermosetting polymer) for long life asphalt surfacing

Asphalt Professional No 82, February 2020

1) Widyatmoko, I, Zao, B., Elliott, R.C., and Lloyd, W.G., "Curing Characteristics and the Performance of Epoxy Asphalts", 10th International Conference on Asphalt Pavements, Quebec, Canada, 12-17 August 2006


- 2) Widyatmoko, I., Elliott, R.C., Lloyd, W., G., "Development of Long Life Deformation Resistant Hot Rolled Asphalt Surfacing", Journal of the Institute of Asphalt Technology, Asphalt Professional No:18, January 2006
- Elliott, R.C., Widyatmoko, I., Chandler, J., Badr. A., and Lloyd, W.G., "Laboratory and Pilot Scale Assessment of Long Life Surfacing for High-Traffic Roads", 4th Eurasphalt & Eurobitume 3) Congress, Denmark, 2008
- Widyatmoko, I and Elliott, R. "Strength characteristics and durability of epoxy asphalts", Construction Materials, 2014. http://dx.doi.org/10.1680/coma.13.00029

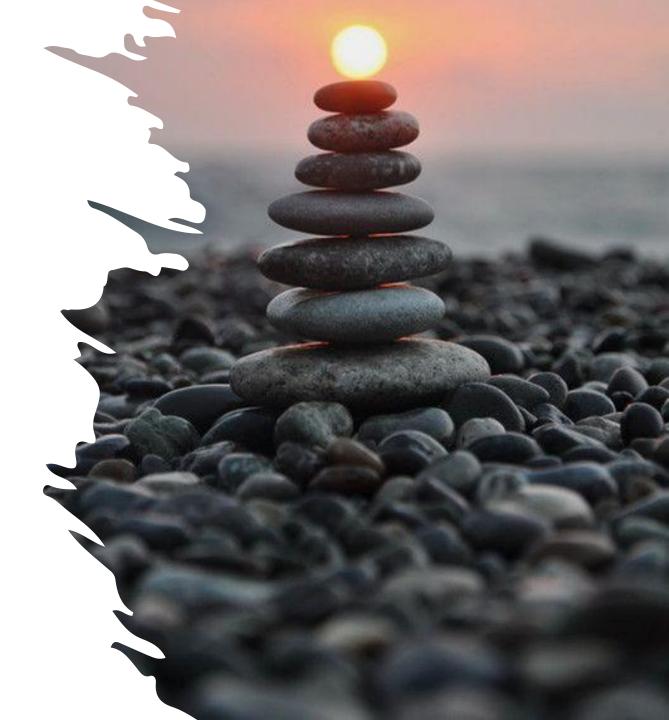
Natural asphalt + polymers for heavy duty mastic asphalt surfacing

Orthotropic bridge deck \rightarrow subject to large movements

- Mastic asphalt: PMB v. non-PMB
- Non PMB mastic asphalt failed prematurely at 70°C wheeltrack testing

Sample ID	Mastic Binder	Mean Rut Rate* (mm/h)	Mean Rut Depth* (mm)	
Mix E	60/80pen +70%TLA	**	>25	
Mix R	Recycled polymers	6.9	7.7	
Mix T	Highly modified SBS1 +60%TLA +additives	6.5	6.2	
Mix U	Recycled polymers +25%TLA	9.6	10.2	

- 1) Widyatmoko, I., Elliott, R.C., and Read, J.M., "Development of Heavy-Duty Mastic Asphalt Bridge Surfacing incorporating Trinidad Lake Asphalt and Polymer Modified Binders", International Journal of Road Materials and Pavement Design, Vol. 6/4, 2005, pp. 469-483. ISSN 1468-0629
- 2) Widyatmoko, I. and Elliott, R.C., "Characteristics of Elastomeric and Plastomeric Binders in Contact with Natural Asphalts", Construction and Building Materials, Volume 22, No.3, March 2008, pp. 239-249, Elsevier, ISSN 0950-0618. doi:10.1016/j.conbuildmat.2005.12.025



Successful application of polymer modified asphalts for bridge deck

Ne	w (2001)	-			Horizonta	al Tensile Mic	rostrain	Predicted	Life (years)
	TANK BAR	State State	Surfacing System	Traffic Speed (kph)	Permissible limits			Deck	Cantilever
		I	Existing MA	Standstill (0)	278	571	680	0.1	0.0
		I DOT DE MANTE	Existing MA	There are obstacles $(0 - 20)$	278	365	440	3.1	0.9
		H	Existing MA	Free-flowing (50)	278	220	260	>20	>20
Original (1961)			GA/PMMA	Standstill (0)	322	440	470	2.4	1.5
			GA/PMMA	There are obstacles $(0 - 20)$	322	320	330	>20	17
			GA/PMMA	Free-flowing (50)	322	175	195	>20	>20
		H H	EA	Standstill (0)	341	395	410	5.0	3.8
		Java / S	EA	There are obstacles $(0 - 20)$	341	175	235	>20	>20
States to the second second		LODART I	EA	Free-flowing (50)	341	<100	170	>20	>20
Forensic investigationSelection of surfacing system optionsCarry out site inspectionReview the track record of surfacing and waterproofing material optionsRecover material samples from site Perform laboratory testingReview the track record of surfacing and waterproofing material optionsCollect the mechanical properties of the nominated optionsCollect the mechanical properties of the nominated optionsCompare advantages and disadvantages for each optionCompare advantages each option	properties of surfacing systemsin surfacingAnalyse past and future (design) trafficre re (design) trafficCarry out finite element analysissy ficRecommend the bestto	Installation of new surfacing system Record and monitor the installation of the new surfacing system as repair material Monitor the performance of the new system post installation for future review prior to major rehabilitation work		Prime		Tack of	0at 02 10 201		

- 1) Widyatmoko, I. "Damages of Orthotropic Bridge Deck Surfacing: Forensic Investigation, Remedial Work and Performance Monitoring". Jurnal Kejuruteraan 33(2) 2021: 281-291. <u>https://doi.org/10.17576/jkukm-2021-33(2)-14</u>
- 2) Widyatmoko, I and Elliott, R.C., "Tamar Bridge Investigation of surfacing defects, design and specification", Proceedings of the 5th International Conference on Forensic Engineering: Informing the Future with Lessons from the Past, The Institution of Civil Engineers (ICE), London, 2013

Research on waste and secondary materials

Waste derived materials

Binder modifier

- Crumb Tyre Rubber
- Waste plastic
- Waste cooking oil
- Waste engine oil
- Recycled shingles

Mixture additive

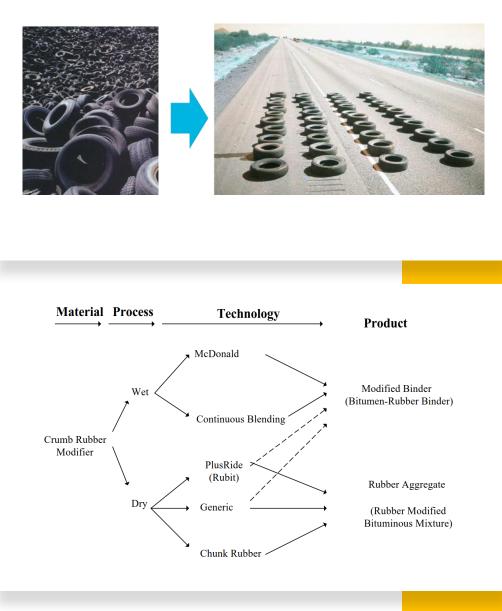
- Power station wastes
 Pulverised fly ash (PFA)
 Furnace bottom ash
- (FBA)
- Domestic wastes (IBA)
- Waste paper

ggregate replacement

- Reclaimed aggregate
- Reclaimed asphalt
- Reclaimed concrete
- Rubber & plastic waste
- Concrete & demolition waste

Artificial (processed) aggregate

• Steel slags:


- BOS basic oxygen slagsEAF electric arc furnace
- Blast furnace slags, including GBBS (granulated)
- Non-ferrous slags
 Phosphorous slags
 ISF aluminium/zinc slags
- Geopolymer aggregate

Papers dan reports are available from: <u>https://www.researchgate.net</u> /profile/Daru-Widyatmoko

aggregates

Use of reclaimed crumb rubber in asphalt mixtures

- Wet process: dispersing the rubber particles in the bitumen to produce rubberised bitumen, which is then mixed with aggregate to form a mixture
 - Road pavement
 - Surface dressing, slurry seal
 - Joint sealant, waterproofing layer
- Dry process: rubber particles act as a partial replacement to some of the aggregate sizes
 - Sport surfaces
 - Playground surfaces

Asphalt rubber: benefits

- improved durability and resistance to age-hardening;
- improved resistance to surface initiated and fatigue/reflection cracking;
- reduced temperature susceptibility;
- improved resistance to rutting;
- lower pavement maintenance costs due to improved pavement durability and performance;
- reduced construction times due to thinner lifts (layer);
- better chip retention due to thicker binder films;
- reduced spray and noise (open graded surface course)

Asphalt Rubber / Environmental Benefits Use Less Natural Resources

Many Projects Qualify For Carbon Offsets

References

- Singleton, T, Airey, G, Widyatmoko, I, Collop, A.C., "Residual Bitumen Characteristics Following Dry Process Rubber-Bitumen Interaction", Proceedings of the Asphalt Rubber 2000 Conference, pp. 364-482, 14-17 November 2000, Vilamoura, Portugal.
- Widyatmoko, I., Elliott, R.C., Grenfell, J., Airey, G.D., Collop, A.C., and Waite, S., "Characteristics of Rubberised Bitumen Blends", Asphalt Rubber 2009 (AR 2009), Nanjing, China, November 2-4, 2009.
- Widyatmoko, I., Elliott, R.C., Grenfell, J., Airey, G.D., Collop, A.C., and Waite, S., "Laboratory Assessment of Workability, Performance and Durability of Rubberised Asphalt Mixtures", Asphalt Rubber 2009 (AR 2009), Nanjing, China, November 2-4, 2009.
- Walsh, I. and Widyatmoko, I. "The Effect of Crumb Rubber in Hot Bitumen", 9th Annual International Conference on Sustainable Aggregates, Pavement Engineering and Asphalt Technology, Liverpool, 18 – 19 February 2009

Use of plastic and non-ferrous metal wastes

Non-ferrous metal wastes as aggregates in highway construction

A M Dunster, F Moulinier, R M Harrex

BRE Construction Division

I Widyatmoko

Scott Wilson

This information paper summarises the output from a series of research projects carried out by BRE in conjunction with Scott Wilson between 2000 and 2004. Detailed reports on several parts of the programme are available from the Waste and Resources Action Programme (WRAP).

This information paper describes general considerations associated with the use of industrial by-products in construction. It also describes the use of by-products from non-ferrous metals production as bound aggregate. Slag derived from the production of zinc was used to construct demonstration roadways made from concrete and asphalt. Concretes containing crushed waste refractory bricks from aluminium smelters were also produced and assessed. In situ performance of the roads and leaching capacity of the materials were also evaluated.

It will be of interest to highway engineers, local authorities, specifiers and other potential users of by-product materials in construction.

IP 8/06

Phase 1 – Basic Waste Characterisation.	Assessment of crushing/grinding of wastes and leaching behaviour (spent pot linings only)					
Phase 2 – Basic Mix Characterisation.	Development of mix-designs and assessment of basic mechanical properties (workability, setting, strength development, density etc). Leach testing of bound materials					
Phase 3 - Development of Mixes for	Development of final mix designs for					
Construction Purposes.	demonstration phase of project					
Phase 4 – Demonstration of Technology.	Construction of trial sections of roadway (and control areas) on a site and assessment of performance and leaching behaviour in service over a 1 year period (ferro-silicate slag only)					

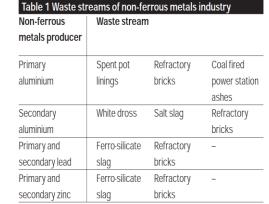
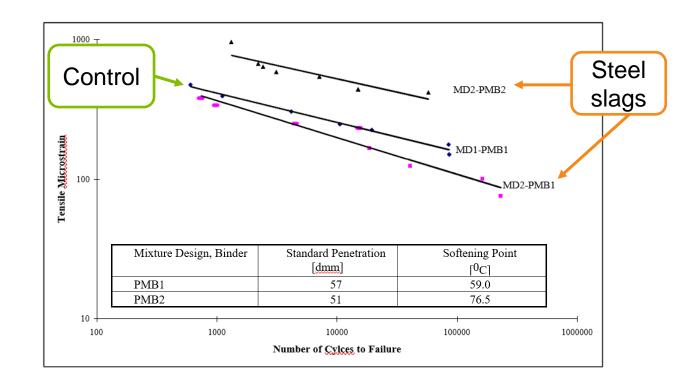


Table 3: Comparison of Materials Properties, Mean Values

Property RSA Content & Type Binder Content (by weight of mixture)		DBM50 Control 4.0%		DBM50P	DBM50S 33% ISF Slag 4.0%			
				20% Manufactured plastic aggregate 4.6%				
Density (Mg/m ³)		2.341	2.379	2.027	2.698	2.652	2.661	
Air Voids (%)		9.5	8.6	7.5	2.4	2.9	3.1	
Stiffness, MPa at:	10°C	10020	-	6420	10470	13130	-	
	20°C	3590	4760	3760	3950	4130	4530	
	30°C	1060	-	2020	1180	980	-	
Deformation Resistance	e:							
Permanent Strain (%)^		2.2	2.2	1.5	1.8	3.1	2.4	
Strain Rate (µɛ/cycle)^^		1.5	1.2	0.5	0.8	2.3	2.3	
Resistance to Moisture (3rd Cycle Stiffness Ra		1.13	0.99	0.87	0.91	1.20	1.36	

Note: *Denote laboratory (*Lab*) or site (*Site*) manufactured/compacted samples; Site-0 and Site-18 denote core removed immediately after construction and after 18 months respectively. ^After 3600 cycles. ^^Between 2600 and 3600 cycles.

Table 2 Properties of concrete placed on site									
	Вау	Control ba	Control bays (without ISF)			Test bays (with ISF)			
	ISF slag (% replacement of sand, by volume)	0	0	0	50	50	50		
	Slump (mm)	70	80	95	110	125	65		
	Measured air content (%)	-	-	_	7.6	7.5	6.8		
Compressive	At 3 days	35.0	30.0	31.5	27.0	25.0	35.0		
strength (water	At 7 days	40.5	35.0	35.5	33.0	28.5	39.0		
stored) cubes	At 28 days	47.5	43.5	42.5	38.0	35.0	44.0		
N/mm ²)	At 91 days	53.5	46.0	45.0	42.5	41.5	49.0		

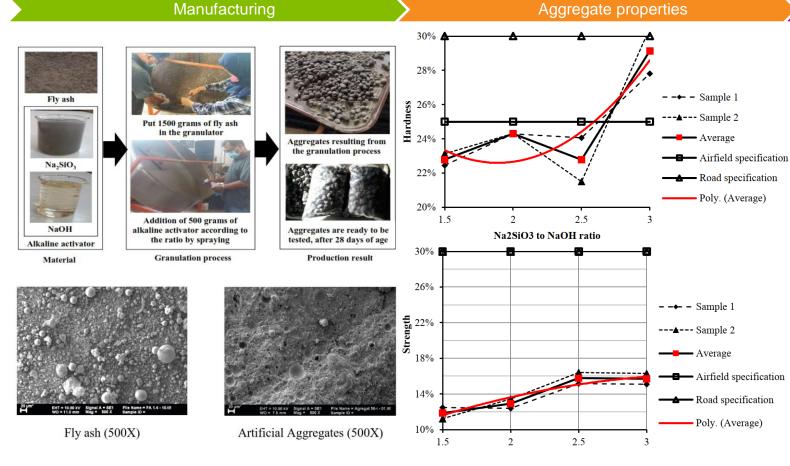

1) Widyatmoko, I., Dunster, A, and Moulinier, F., "Performance and benefits from using waste plastic-based aggregate in asphalts", International Conference on Sustainable Construction Materials and Technologies, Coventry, 2007.

- 2) Widyatmoko, I.; Moulinier, F.; and Dunster, A. "Added value potential of processed plastic aggregate and ISF slag in asphalt". 10th International Conference on Asphalt Pavements. Quebec, Canada, 2006.
- 3) Dunster, A.M., Moulinier, F, Abbott, B, Conroy, A., Adams, K., Widyatmoko, D., "Added Value of Using New Industrial Waste Streams in both Concrete and Asphalt. Feasibility of Using Waste Material in Asphalt Applications." The Waste & Resources Action Programme, R&D Report: Aggregates, 2005, ISBN 1-84405-186-2

Use of steel slags in roads

- By-products of steel manufacturing processes
 - Electric arc furnace (EAC) process
- ✓ MD1 (primary), MD2 (steel slags)
- Steel slags as coarse and fine aggregates and filler
- Polymer modifier binders:
 - PMB1 for MD1 and MD2
 - PMB2 for MD2 only

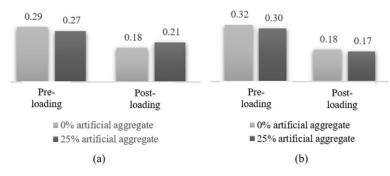
Material	Mixture Design 1 (MD1), [%]	Mixture Design 2 (MD2), [%]
Coarse Aggregate	62.2	58.5
Fine Aggregate	21.4	24.5
Filler	10.5	11.3
Fiber	0.0	0.05
Binder	5.9	5.65



Mixture	Air voids	Rut rate at	Rut rate	Rut Depth at	Rut Depth at
		$45^{\circ}C$	at 60°C	$45^{\circ}C$	$60^{\circ}C$
		[mm/h]	[mm/h]	[mm]	[mm]
Clause 943	maximum = 5.5%	maximum = 2	maximum = 4	maximum = 5	maximum = 7
MD1-PMB1	3.85%	0.89	1.66	2.75	4.15
MD2-PMB1	3.92%	0.86	1.36	3.03	4.87
MD2-PMB2	4.19%	0.52	0.51	1.87	2.19

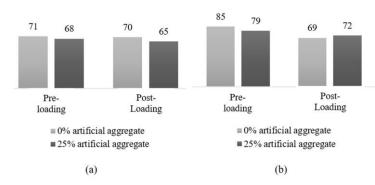
Ellis, C.; and Widyatmoko, I. (1999). Performance and durability aspects of asphalts incorporating electric arc furnace steel slag aggregates designed for use in thin pavement surfacings. Proceedings of the 3rd European Symposium on Performance and Durability of Bituminous Materials and Hydraulic Stabilised Composites. Leeds, United Kingdom

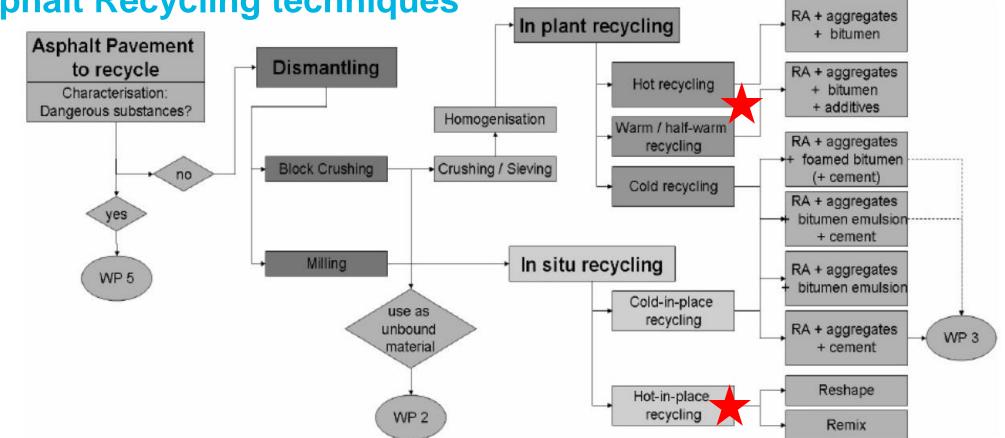
Geopolymer artificial aggregate in asphalt


Na2SiO3 to NaOH ratio

- 1) Karyawan IDMA, Ekaputri JJ, Widyatmoko I and Ariatedja E, "The Effects of Na2SiO3/NaOH Ratios on the Volumetric Properties of Fly Ash Geopolymer Artificial Aggregates", Materials Science Forum 967 (2019). DOI: 10.4028/www.scientific.net/MSF.967.228
- Karyawan IDMA, Ekaputri JJ, Widyatmoko I and Ariatedja E, "The Effect of various Na2SiO3/NaOH Ratios on the Physical Properties and Microstructure of Artificial Aggregates", Journal of Engineering Science and Technology, Vol. 15, No. 2 (2020) 1139 – 1154
- Karyawan IDMA, Widyatmoko I, Ekaputri JJ, and Ariatedja E. "Texture and Skid Resistance of Asphalt Concrete Surface Course incorporating Geopolymer Artificial Aggregates". 12th International Conference on Road and Airfield Pavement Technology, 2021

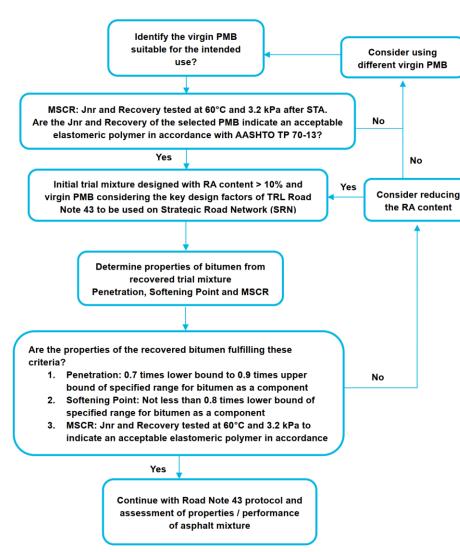
Asphalt mixture properties

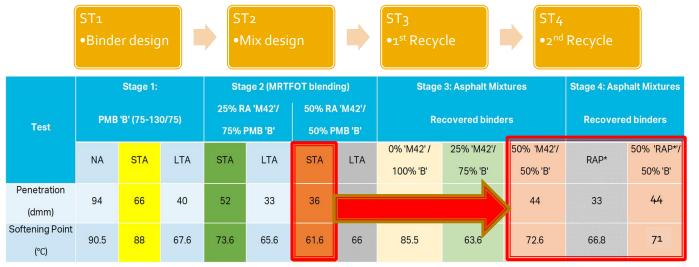

Macrotexture (texture depth)

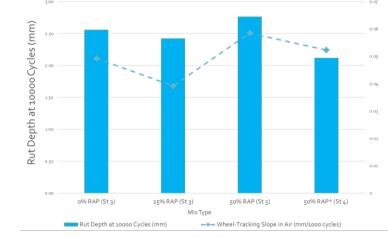

Comparison of the results of ACSC **texture depth** measurements without (0%) and with 25% artificial aggregate (a) dense graded, (b) open graded

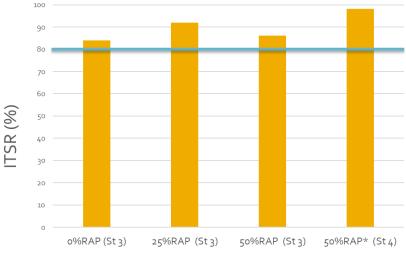
Skid Resistance

Comparison of the results of ACSC **skid resistance** measurements without (0%) and with 25% artificial aggregate (a) dense graded, (b) open graded, pre- and post-wheel track loading.

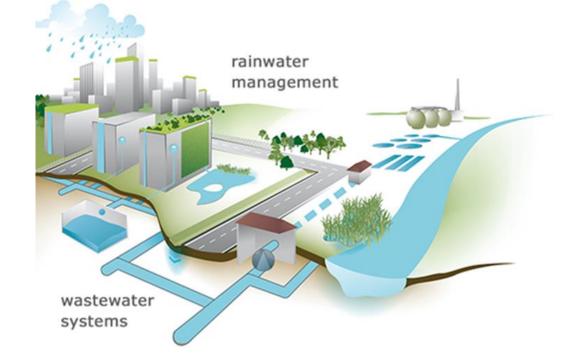


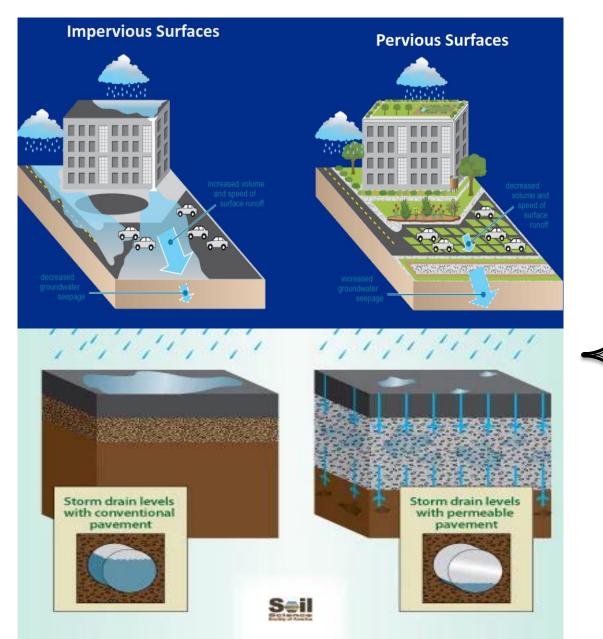

Asphalt Recycling techniques


- 1) De Bock, L., Arm, M., de Lurdes Antunes, M., Descantes, Y., Gaspar, L., Mollenhauer, K., and Thogersen. F. "Developing best practices on recycling or safe disposal of road materials in Europe the DIRECT-MAT project", XXIV PIARC World Road Congress, Mexico City, 2011
- 2) Troeger, J and Widyatmoko, I. "Development in Road Recycling", 11th Annual International Conference on Pavement Engineering and Infrastructure, Liverpool, 2012
- 3) Widyatmoko, I. "Mechanistic-Empirical Mixture Design for Hot Mix Asphalt Pavement Recycling", Construction and Building Materials 22(2):2008. doi:10.1016/j.conbuildmat.2006.05.041
- 4) Nichols, J.C., Carswell, I., Widyatmoko, I., Elliott, R.C., Harris, J.H., and Taylor, R., "Recycling Surfacings into Thin S urfacing Systems", Construction Materials 161, Issue CM3, August 2008, pp. ("Howard Medal for Best Paper 2009" by ICE Journal 'Construction Materials', Thomas Telford, London)
- 5) Widyatmoko, I., and Sunarjono, S., "Some Considerations to Implement Foamed Bitumen Technology for Road Construction in Indonesia", 1st European Asian Civil Engineering Forum (EACEF) International Conference, Jakarta, 2007

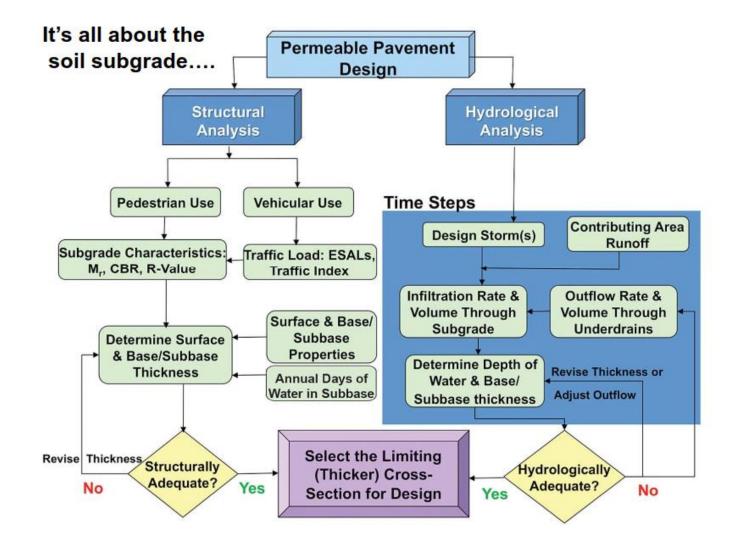

Multiple Recycling with RA containing PMB

https://aecom.com/uk/wp-content/uploads/2021/06/report_highways-england_60618808_1-979_subtask-1.pdf

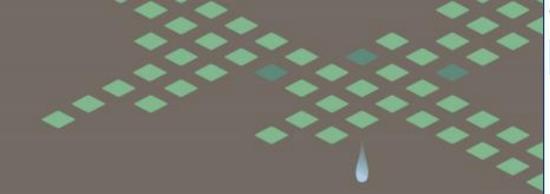




Urban Drainage Systems


Permeable Pavements

 1.It allows rainfall to be captured and to percolate into the ground.
 2.It reduces stormwater runoff
 3.It recharges groundwater
 4.It supports sustainable construction


Hydrologic and structural design overview

Type & application

- Material/Pavement Type
 - Porous media?
 - Porous asphalts?
 - Porous concrete?
 - Block paving?
 - Permeable Interlocking Concrete Pavement?

- Application
 - Parking area
 - Roads rural
 - Roads urban
 - Roads intercity
 - ...others.

Permeable Pavements

Permeable Pavements Task Committee

CONTERN BY

Bethany Eisenberg, LEED AP Kelly Collins Lindow, PE David R. Smith

Table 1-1 Typical Permeable Pavement Types

MATERIAL AND DESCRIPTION

Porous asphalt (PA)

Porous asphalt is similar to conventional asphalt, except the fines are removed to create greater void space. Additives and higher-grade binders are typically used to provide greater durability and prevent draindown of the asphalt binder.

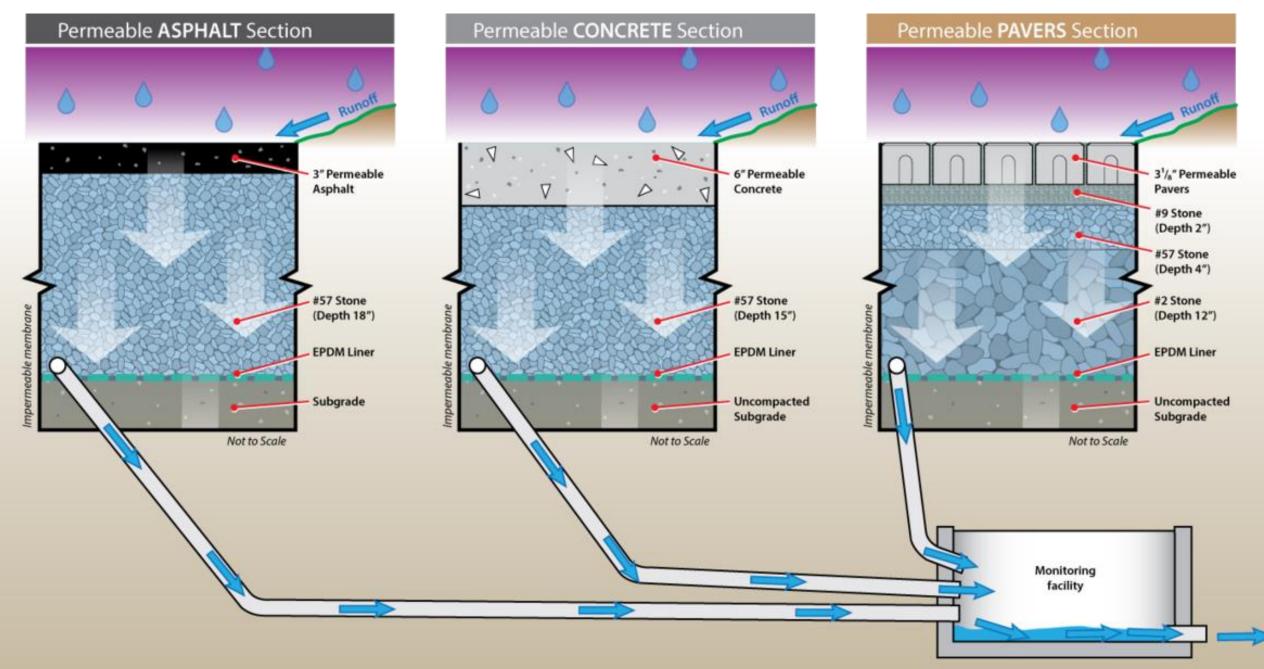
Pervious concrete (PC)

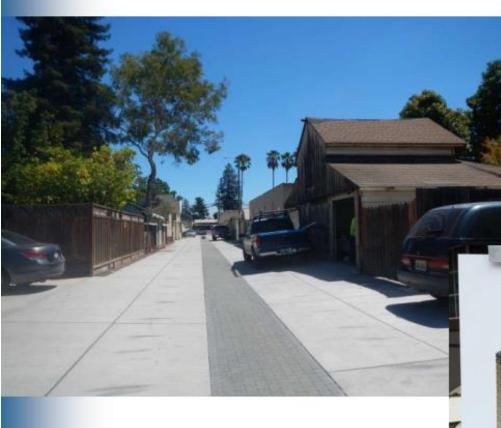
Pervious concrete is produced by reducing the fines in the mix to maintain interconnected void space and has a coarser appearance than standard concrete. Additives may be added to increase strength.

Permeable interlocking concrete pavement (PICP) PICP is made of interlocking concrete pavers that maintain drainage through stone-filled gaps between the pavers. The pavers are not permeable.

Grid pavement systems (plastic or concrete)

Grid pavement systems are modular grids filled with turf and/or gravel. Open-celled concrete or plastic structural units are typically filled with small uniformly graded gravel that allows infiltration through the surface.


DETAIL



https://www.usgs.gov/media/images/permeable-pavement-test-plot-cross-sections

Pervious Pavement in Parks: Commodore Park, San Jose

Pervious Pavement Over Infiltration Trench

Pervious Concrete

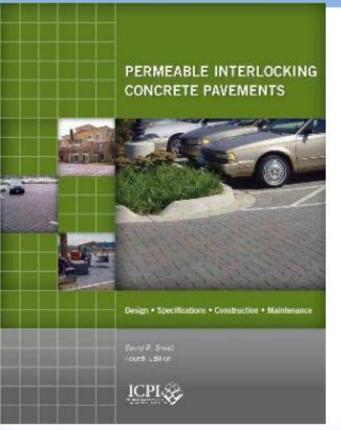
Dr Art Miller (Penn State)

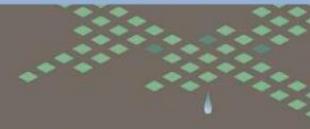
- "Thus the limiting infiltration rate for the porous pavement tested would depend on the soil infiltration rate of the soil that supports the pavement"
- To avoid restricting the flow through the concrete the stone base must be as porous as the concrete. ³/₄ to ¹/₄ inch stone with no fines does not restrict the flow and can provide the necessary storage

Grid pavement system

Porous Asphalt

- Void content ~20%
 - \rightarrow Noise reduction (PA16 4 dB < AC or SMA)
 - \rightarrow Improved water drainability
 - → Improved water Retention


- Stone skeleton
 - \rightarrow Improved resistance against deformation
 - \rightarrow Lower resistance against shear stresses



ICPI & ASCE Resources

Permeable Interlocking Concrete PavementsPermeable PavementsDesign, Specifications, Construction & Maintenance
(100 pages)ASCE e-book
(250 pages)

Permeable Pavements

Permeable Pavenents Task Committee

Bethany Eisenberg, LED AF Kelly Collins Lindow, PE David R. Smith

SCE 🛞

Defects and failures

Settlement of Base/Subbase

Settlement and Ponding at Transition

Thank You

DEFINITION OF GREEN TRANSPORTATION INFRASTRUCTURE

ASPHALT MATERIALS

PRODUCED BY GREEN

TECHNOLOGY

RESEARCH ON WASTE

AND SECONDARY

MATERIALS

URBAN DRAINAGE SYSTEMS

http://www.linkedin.com/in/ daruwidyatmoko http://twitter.com/ Daru_Widyatmoko https://www.researchgate.net/ profile/Daru_Widyatmoko

Nottingham, 28 October 2023