PENAMBAHAN LINGKARAN PELINDUNG PADA TURBIN AIR ROTOR SAVONIUS

Rendi Rendi, Firda Herlina

Abstract


The savonius water turbine has a main component, which is blade, the concave portion has a positive work and the convex blade has a negative work. Concave profiles in advancing blade as flow catchers and convex profiles on the returning blade as reflecting flow so that there is a difference in torque. The greater the torque difference the better the turbine performance. The way to enlarge this torque difference is by enlarging the drag force. This study aims to increase the difference in torque by adding a protective circle behind the blade advancing blade. This research uses Solidwork software to design turbines and Ansys CFX 19.2 software to analyze torque. Based on the analysis results, the addition of a protective circle can increase the difference in torque. The largest torque value is owned by the turbine with the addition of a protective circle 10 mm from the blade of 46,524 Nm, the largest power value is owned by the turbine with the addition of a protective circle 10 mm by 182 Watts and the greatest efficiency value is owned by the turbine with the addition of a protective circle 10 mm 50% turbine. The addition of a protective circle 10 mm away from the blade is the most optimal turbine geometry for use in water flow power plants, especially in slow-flow rivers.

Keywords


Savonius turbine, protective circle, torque, blade advancing

Full Text:

PDF

References


Bhatt, H. and Jani, S. (2014) ‘Energy Generation in Water Pipe Lines Savonius Water Turbine Power’, International Journal of Research in Advent Technology, 2(12), pp. 2321–9637.

Bhaumik, T. (2010) ‘Performance measurement of a two bladed helical Savonius rotor’, Proc. 37th International & 4th National Conference on …, 4(1).

Golecha, K., Eldho, T. I. and Prabhu, S. V. (2011) ‘Influence of the deflector plate on the performance of modified Savonius water turbine’, Applied Energy, 88(9), pp. 3207–3217. doi: 10.1016/j.apenergy.2011.03.025.

Iio, S. et al. (2011) ‘Influence of setting condition on characteristics of Savonius hydraulic turbine with a shield plate’, Journal of Thermal Science, 20(3), pp. 224–228. doi: 10.1007/s11630-011-0462-9.

Irsyad, M. (2010) ‘Kinerja turbin air tipe darrieus dengan sudu hydrofoil standar naca 6512’, Ilmiah Teknik Mesin, 1(2), pp. 91–97.

Kailash, G., Eldho, T. I. and Prabhu, S. V. (2012) ‘Performance study of modified savonius water turbine with two deflector plates’, International Journal of Rotating Machinery, 2012. doi: 10.1155/2012/679247.

Kamoji, M. A., Kedare, S. B. and Prabhu, S. V. (2009) ‘Experimental investigations on single stage modified Savonius rotor’, Applied Energy, 86(7-8), pp. 1064–1073. doi: 10.1016/j.apenergy.2008.09.019.

Mabrouki, I., Driss, Z. and Abid, M. S. (2014a) ‘Experimental Investigation of the Height Effect of Water Savonius Rotors’, International Journal of Mechanics and Applications, 4(1), pp. 8–12. doi: 10.5923/j.mechanics.20140401.02.

Mabrouki, I., Driss, Z. and Abid, M. S. (2014b) ‘Performance Analysis of a Water Savonius Rotor: Effect of the Internal Overlap’, Sustainable Energy, 2(4), pp. 121–125. doi: 10.12691/rse-2-4-1.

Mohamed, M. H. A. (2011) ‘Design optimization of Savonius and Wells turbines’, pp. 1–198. Available at: http://edoc.bibliothek.uni-halle.de/receive/HALCoRe_document_00010715?lang=de.

Muliawan, A. and Yani, A. (2016) ‘Analisis Daya Dan Efisiensi Turbin Air Kinetis Akibat’, Journal Of Sainstek, 8(1), Pp. 1–9.

Mulkan, I., Hantoro, R. and Nugroho, G. (2012) ‘Analisa Performansi Turbin Arus Sungai Vertikal Aksis Terhadap Penambahan Variasi Panjang’, Jurnal Teknik Pomits, 1(1), Pp. 1–5.

Pietersz, Richard , Rudy Soenoko, S. W. (2013) ‘Pengaruh Jumlah Sudu Terhadap’, Jurnal Rekayasa Mesin, 4(2), pp. 93–100.

Purnama, A. C., Hantoro, R. and Nugroho, G. (2013) ‘Rancang Bangun Turbin Air Sungai Poros Vertikal Tipe Savonius dengan Menggunakan Pemandu Arah Aliran’, Jurnal Teknik ITS, 2(2), pp. B278–B282.

Sahim, K., Santoso, D. and Radentan, A. (2013) ‘Performance of combined water turbine with semielliptic section of the savonius rotor’, International Journal of Rotating Machinery, 2013. doi: 10.1155/2013/985943.

Saha,U.K & Rajkumar. 2006 “On the performance analysis of Savonius rotor with twisted blades” Jurnal Renewable Energy 31(11), pp.1776-1788 doi.org/10.1016/j.renene.2005.08.030

Thakker, H. B. (2016) ‘International Journal of Modern Trends in Engineering and Research’, International Journal of Modern Trends in Engineering and Research, (2349), pp. 645–652.

Verma, A. K. and Saini, R. P. (2015) ‘Efficiency Measurement Techniques Of Hydro Kinetic Turbines : A Review’, Ichpsd, Pp. 268–285.

Wahyudi, B. et al. (2013) ‘A Simulation Study of Flow and Pressure Distribution Patterns in and around of Tandem Blade Rotor of Savonius (TBS) Hydrokinetic Turbine Model’, Journal of Clean Energy Technologies, 1(4), pp. 286–291. doi: 10.7763/JOCET.2013.V1.65.

Yaakob, O., Arif Ismail, M. and Ahmed, Y. M. (no date) ‘Parametric Study for Savonius Vertical Axis Marine Current Turbine using CFD Simulation’, pp. 200–205.




DOI: http://dx.doi.org/10.20527/infotek.v20i2.7720

DOI (PDF): http://dx.doi.org/10.20527/infotek.v20i2.7720.g5911

Article Metrics

Abstract view : 387 times
PDF - 503 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 INFO-TEKNIK

Creative Commons License
This work is licensed under a�Creative Commons Attribution 4.0 International License.�

joomla
statistics View My Stats

Indexed By:

Citation :

SINTA 6 mulai Vol. 19 No. 2 2018 (SK NO. 164/E/KPT/2021)

GOOGLE SCHOLAR : Sitasi = 78, H-index = 5, i10-index = 2

IPI :� Artikel = 100

IOS 3969 : Artikel = 239