OTOMATISASI TINGKAT KUALITAS KAYU KELAPA MENGGUNAKAN GENETIC ALGORITHM

Husnul Khatimi, Yuslena Sari

Abstract


Coconut plantation in South Borneo had a total area of 30,513 ha with 26,633 tons of production result in the year of 2016. But South Borneo is still limited in the utilization of fruit part and leaf, whereas the coconut wood then was often used for construction material. The level of needs for coconut wood material in the industrial world were greatly increased. Indonesia is one of the exporter of coconut wood material into other countries. To determine good quality woods for best quality materials, control for the full process was necessary in order for the product to be ready to use. The visual determination of quality level (grading) for coconut wood need to be automated, with the result that could be used for determination of suitable material for furniture as well as building construction and deacrese the dependency for manual grader. This research produced the proposed enhancement methode for quality image recognition in a visual manner for coconut wood, Genetic Algorithm, that could obtain the necessary accuracy for the quality determination of coconut wood. The benefits of this research was to support coconut plantation on South Borneo in producing coconut wood material as one of the material industry commodities.

Keywords


coconut wood, quality, genetic algoritma

Full Text:

PDF

References


Balfas, Jamal. 2007. Perlakuan pada Kayu Kelapa (Cocos Nucifera) (Resin Treatment on Coconut Wood). Jurnal Penelitian Hasil Hutan 25(2).

Direktorat Jenderal Perkebunan. 2016. Statistik Perkebunan Indonesia 2015-2017

Dong, Zhao. 2009. Automated Recognition of Wood Damages Using Artificial Neural Network. 2009 International Conference on Measuring Technology and Mechatronics Automation, ICMTMA 2009 3: 195–97.

Ediyanto, Mara, M. N., & Satyahadewi, N. (2013). Pengklasifikasian Karakteristik Dengan Metode K-Means Cluster Analysis. Buletin Ilmiah Mat. Stat. dan Terapannya, 2, 133-136.

Ganatra, A., Kosta, Y. P., Panchal, G., & Gajjar, C. (2011). Initial Classification Through Back PropagationIn a Neural Network Following Optimization Through GA to Evaluate the Fitness of an Algorithm. International Journal of Computer Science & Information Technology (IJCSIT), 3.

Harsono, Dwi. 2011. Sifat Fisis dan Mekanis Batang Kelapa (Cocos Nucifera L.) dari Kalimantan Selatan. Jurnal Riset Industri Hasil Hutan 3(1): 29–39.

Kadir, A., & Susanto, A. (2013). Pengolahan Citra Teori dan Aplikasi. Yogyakarta, Indonesia: Andi.

K, Saleh Ali et al. 2009. Digital Recognition Using Neural Network. Journal of Computer Science 5(6): 427–34.

Khalid, Marzuki, Eileen Lew Yi Lee, Rubiyah Yusof, and Miniappan Nadaraj. 2008. Design of an Intelligent Wood Species Recognition System. International Journal of Simulation System, Science and Technology 9(3): 9–19.

Marques, O., & Furht, B. (2002). Content Based Image and Video Retrieval. Florida, United States: Kluwer Academic.

Munir, R. (2004). Pengolahan Citra Digital dengan Pendekatan Algoritmik. Bandung, Indonesia: Informatika.

Pambudi, W. S., & Simorangkir, B. M. (2012, May). Facetracker Menggunakan Metode Haar Like Feature dan PID Pada Model Simulasi. Jurnal Teknologi dan Informatika, 2, 142-154.

Petrou, M., & Sevilla, P. G. (2006). Image Processing Dealing With Texture. Chichester: John Wiley & Sons Inc.

Pedoman Teknis Pengembangan Tanaman Kelapa. (2013). Jakarta, Indonesia: Direktorat Jendral Perkebunan Kementrian Pertanian.

R M, G. M., P, M. -C., R, O., & A, C. (2012, July). Traditional wetland palm uses in construction and cooking in Veracruz, Gulf of Mexico. Indian Journal of Traditional Knowledge , 11 (3), 408-413.

Ruz, Gonzalo a, and Claudio a Perez. 2005. A Neurofuzzy Color Image Segmentation Method for Wood Surface Defect Detection. Forest Products Journal 55(9760): 52–58.

Schalkoff, & Robert, J. (1989). Digital Image Processing and Computer Vision. John Wiley & Sons Inc.

Sergy´an, S. (2008). Color Histogram Features Based Image Classification in Content-Based Image Retrieval System. International Symposium on Applied Machine Intelligence and Informatics, 221-224.

Sheshadri, H. S., & Kandaswamy, A. (2006). Breast Tissue Classification Using Statistical Feature Extraction Of Mammograms. Departement of Electronics & Communication Engginering, 23, 105-107.

Singh, Ajay Kumar, Shamik Tiwari, and V.P. Shukla. 2012. Wavelet Based Multi Class Image Classification Using Neural Network. International Journal of Computer Applications 37(4): 21–25.

Sun, Jun-ding, Yuan-yuan Ma, Xiao-yan Wang, and Xin-chun Wang. 2010. Image Classification Based on Texture and Improved BP Neural Network. (July): 98–100.

Wardhani, I. Y., Surjokusumo, S., Hadi, Y. S., & Nugroho, N. (2003, December). Sifat Mekanis Kayu Kelapa Bagian dalam Terpadatkan. RIMBA Kalimantan Falkutas Kehutanan Unmul, 11, 62-68.

Wenshu, L., S. Lijun, and W. Jinzhuo. 2015. Study on Wood Board Defect Detection Based on Artificial Neural Network. Open Automation and Control Systems Journal 7(1): 290–95.

Yang, X., Qi, D., & Li, X. (2010). Multi Scale Edge Detection of Wood Defect Images Based On The Dyadic Wavelet Transform. International Conference On Machine Vision And Human Machine Interfac.

Yuwono, I.N. Ign. Ngesti, Ricardus Anggi R.A. Pramunendar, P.N. Pulung Nurtantio Andono, and R.A. Rm Among Subandi. 2013. The Quality Determination of Coconut Wood Density Using Learning Vector Quantization. Journal of Theoretical and Applied Information Technology 57(1): 82–88




DOI: http://dx.doi.org/10.20527/infotek.v20i2.7721

DOI (PDF): http://dx.doi.org/10.20527/infotek.v20i2.7721.g5912

Article Metrics

Abstract view : 16 times
PDF - 10 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 INFO-TEKNIK

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License

joomla
statistics View My Stats

Indexed By:

 

Citation :

SINTA Grade 5 (Arjuna 44,06) :

GOOGLE SCHOLAR : Kutipan = 24, H-index = 3, i10-index = 0

IPI :  Artikel = 100

IOS 3969 : Artikel = 239