KARAKTERISASI Bacillus sp. PENGHASIL ASAM INDOL ASETAT ASAL RIZOSFER PERTANIAN PASANG SURUT DAN POTENSINYA SEBAGAI PEMACU PERTUMBUHAN PADI LOKAL

Adistya Adistya, Hasrul Satria Nur, Yusriadi Yusriadi

Abstract


Bacillus sp., a member of the microbe, resided in the rhizosphere, potentially in plant growth promoting through a direct or indirect mechanism - phytohormone production, i.e., ethylene, gibberellin, cytokinin, and indole acetic acid.  Bacillus sp. from soil agriculture in tidal swamp lands was isolated.  Morphological, biochemical, and physiological properties have characterized attributes of isolation.  In addition, indole acetic acid production is detected using the colorimeter method with the Salkowski reagent.  The capability of the isolate to regulate plant growth promotion was carried out by detecting the performance of the paddy plant on the Yoshida medium cultivated.  Five isolates have been characterized as plant growth-promoting rhizobacteria, e.g., BML-1, KK, SLC-2, SLK, and SPBKK-1.  Furthermore, five isolates showed differences in indole acetic acid production, with or without adding tryptophane as a precursor.  Indole acetic acid production without tryptophane ranged from 0.364 – 7.046 mg.ml-1.  On the other hand, the indole acetic acid production by adding tryptophane in varied concentrations, viz 1, 2, and 5 mg.ml-1 is respectively delineated as follows 0.819 – 8.227 mg.ml-1; 1.046 – 10.727 mg.ml-1; 1.954 -18.909 mg.ml-1. Meanwhile, the inoculation of Bacillus sp. isolates improved paddy plant growth regarding yield and root fibers of paddy plants.


Full Text:

PDF

References


Ashrafuzzaman, M. Farid Akhtar Hossen, M. Razi Ismail, Md. Anamul Hoque, M. Zahurul Islam, S.M. Shahidullah and Sariah Meon. 2009. Efficiency Of Plant Growth-Promoting Rhizobacteria (PGPR) For The Enhancement Of Rice Growth. African Journal of Biotechnology Vol. 8 (7), pp. 1247-1252

Bar T, Okon Y. 1992. Induction of Indole-3-Acetic Acid Synthesis and Possible Toxicity of Tryptophan in Azospirillum brasiliensi Sp 7. Symbiosis 13. 191 – 198

Barriuso, J. Beatriz Ramos Solano, José A. Lucas, Agustín Probanza Lobo, Ana García-Villaraco, and Francisco J. Gutiérrez Mañero. 2008. Ecology, Genetic Diversity and Screening Strategies of Plant Growth Promoting Rhizobacteria (PGPR). WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Bashan Y, Holguin G. 1998. Proposal for The division of Plant Growth Promoting Rhizobacteria into two Classification Biocontrol PGPB. Soil Biology and Biochemistry. 30: 1225 – 1228

Basharat, Ali. Anjum Nasim Sabri, Karin Ljung, Shahida Hasnain. 2009. Quantification of indole-3-acetic acid from plant-associated Bacillus spp. and their phytostimulatory effect on Vigna radiata (L.). World J Microbiol Biotechnol 25:519–526

Benson. 2001. Microbiological Applications Lab Manual, Eighth Edition. Mc Graw Hill Companies

Broughton WJ, Perret X. 1999. Genealogy of Legume – Rhizobium Syimbiosis. Current Opinion in Plant Biology 2: 305 – 311

Cappucino JG dan N Sherman. 2001. Microbiology a Laboratory Manual, Sixth Edition. Benjamin Cumming Publisher

Cattelan AJ, P.G. Hartel, J.J Fuhrmann. 1999. Screening for Plant Growth Promoting Rhizobacteria to Promote Early Soybean Growth. Soil Sci. Soc. Am. J. 63: 1670 – 1680

Demain, Arnold L. 1998. Induction of Microbial Secondary Metabolism. Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. Internatl Microbiol 1 : 259 – 264

Dilfuza, Egamberdieva. 2008. Plant Growth Promoting Properties of Rhizobacteria Isolated from Wheat and Pea Grown in Loamy Sands Soil. Turk J Biol 32: 9 – 15

Dobereiner, J. 1992. History and new Prospectives of Diazotrophs in Association with Non-Leguminous Plants. Symbiosis. 13: 1 – 13

Donald E. Fosket. 1994. Plant Growth and Development. A Molecular Approach. Department of Developmental and Cell Biology School of Biological Science. University of California

Elsorra E. Idris,.H. Bochow, H. Ross, R. Borriss. 2004. Use of Bacillus subtilis as biocontrol agent. VI. Phytohormonelike action of culture filtrates prepared from plant growth-promoting Bacillus amyloliquefaciens FZB24, FZB42, FZB45, and Bacillus subtilis FZB37. Journal of Plant Diseases and Protection 111 (6), 583–597, ISSN 0340-8159

Elsorra E. Idris, Domingo J. Iglesias, Manuel Talon, Rainer Borriss. 2007. Tryptophan-Dependent Production of Indole-3-Acetic Acid (IAA) Affects Level of Plant Growth Promotion by Bacillus amyloliquefaciens FZB42. MPMI Vol. 20, No. 6, 2007, pp. 619–626

Enriquez GL, LS Saniel, RR Matias, dan JL Garibay. 1995. Laboratory Manual in General Microbiology. Univ of The Philippines Press

Frankenberger Jr. WT. Poth M. 1998. L-tryptophan Transaminase of A Bacterium Isolated from The Rhizosphere of Festuca octoflora (Graminae). Soil Biol Biochem 20: 299 – 304

Hung PQ, Annapurna K. 2004. Isolation and Characterization of Endophytic Bacteria in Soybean (Glycine sp). Omonrice 12: 92 – 101

Husen, Edi. 2003. Screening of Soil Bacteria for Plant Growth Promotion Activities In Vitro. Indonesian Journal of Agricultural Science 4 (1): 27 – 31

Lestari Puji, Susilowati D. N., dan Riyanti E. I. 2007. Pengaruh Hormon Asam Indol Asetat yang Dihasilkan Azospirillum sp terhadap Perkembangan Akar Padi. Balai Besar Penelitian dan Pengembangan Bioteknologi dan Sumberdaya Genetik Pertanian. Jurnal AgroBiogen 3(2): 66 – 72

Leveau JHJ, Lindow SE. 2005. Utilization of The Plant Hormone Indol-3 Acetic Acid for Growth by Pseudomonas putida strain 1290. Appl Environ Microbiol 71: 2365 – 2371

Mattjik, A. A., & Sumertajaya, I. M. (2002). Perancangan Percobaan Jilid I (2nd ed.). Bogor: IPB Press.

Mavingui P, Odile B, Thierry H. 1992. Genetic and Phenotypic Diversity of Bacillus polymyxa in Soiland in the Wheat Rhizosphere. Appl Environ Microbiol 58(6): 1894 – 1903

Paterno. 1997. Plant Growth Promoting Rhizobacteria: Their Potential in Improving Crop Productivity. Second Profesional Lecture, Folix D. Maramba Professorial Chain, Department of Soil Science, UP Los Banos

Patten CL, Glick BR. 2002. Role of Pseudomonas putida Indol Acetic Acid in Development of The Host Plant Root System. Appl Environ Microbiol 68: 3795 – 3801

Rebecca Lines – Kelly. 2005. The Rhizosphere. Department of Primary Industries. New York

Ryu CM, Mohamed A. Farag, Chia-Hui Hu, Munagala S.Reddy, Joseph W.Kloepper, Paul W.Pare. 2004. Bacterial Volatiles Induce Systemic Resistance in Arabidopsis. Plant Physiol 134: 1017 – 1026

Shishido M, Massicotte HB, Chanway CP. 1996. Effect of Plant Growth Promoting Bacillus strains on Pine and Spruce Seedling Growth and Mycorrhizal Infection. Ann Bot 77: 433 – 441

Spaepen Stijn, Jos Vanderleyden, Roseline Remans. 2007. Indol-3 Acetic Acid in Microbial and Microorganism - Plant Signaling. FEMS Microbiol Rev 1–24

Strzelczyk E, Pokojska-Burdziej A. 1984. Production of auxins and gibberellin like substances by mycorrhizal fungi, bacteria and actinomycetes isolated from soil and mycorhizosphere of pine (Pinus silvestris L. ). Plant and Soil 81: 185-194

Trinchant JC, Drevon JJ, Rigaud J. 2001. Symbiotic Nitrogen Fixation. In: Morot-Goundry JF, ed. Nitrogen Assimilation by Plants. Physiological, Biochemical, and Molecular Aspects. Enfield (NH, USA), Plymouth (UK): Science Publishers, 121 – 134

Todar, Kenneth. 2008. Textbook of Bacteriology. The University of Wisconsin-Madison

Diakses tanggal 15 November 2008

www.textbookofbacteriology.net

Widayanti, T. 2007. Isolasi dan Karakterisasi Bacillus sp. Indigenus Penghasil Asam Indol Asetat Asal Tanah Rizosfer. Skripsi. Departemen Biologi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor: Bogor (tidak dipublikasikan)

Yoshida S, Forno DA, Cock JH, Gomez KA. 1976. Laboratory Manual for Physiological Studies of Rice, Ed 3. The International Rice Research Institute, Manila, The Philippines




DOI: https://doi.org/10.20527/b.v21i2.13283

Refbacks

  • There are currently no refbacks.