Integrasi Konsep Multi Representasi dengan Gaya Belajar sebagai Penguatan & Rekonstruksi Pengetahuan dalam Pembelajaran Kimia
Abstract
Kimia representasi merupakan konsep yang sangat penting dalam memahami ilmu kimia. Dampak terbesar yang mungkin diperoleh dari tindakan pengadopsian konsep pembelajaran kimia berbasis representasi adalah kadar miskonsepsi yang cukup menjamur dalam pembelajaran kimia mampu direduksi secara bertahap sehingga paradigma bahwa materi kimia merupakan materi yang sulit dipahami dihilangkan. Indikator keberhasilan pembelajaran kimia tentu berhubungan dengan sejauh mana progres perkembangan pemahaman dan gaya belajar siswa di kelas. Tujuan kegiatan ini yakni untuk mendesiminasikan bagaimana peran konsep representasi kimia dan gaya belajar (kecerdasan ganda & self-efficacy) dalam pembelajaran kimia. Metode kegiatan yang digunakan yaitu metode sosialisasi formal. Peserta kegiatan ini ialah 66 guru SMA Se-Kota Banjarmasin. Teknik pengumpulan data yaitu teknik dokumentasi, observasi, dan wawancara agar memeproleh informasi yang jelas dari para responden. Hasil kegiatan menunjukkan bahwa masih banya guru yang belum mengetahui pentingnya menganalisis kebutuhan dan gaya belajar siswa sebelum pembelajaran terjadi sehingga kegiatan ini memberi dampak besar khususnya bagaimana membuat pembaharuan dalam pembelajaran kimia. Artinya, Multi Representasi kimia & Learning Style (Kecerdasan Ganda-Self Efficacy) adalah jembatan sebagai penguatan & rekonstruksi pengetahuan dalam pengajaran dan pembelajaran kimia. Terkhusus bagi guru bahwa menganalisis kebutuhan belajar peserta didik adalah acuan awal dalam mendesain suatu model pembelajaran yang tepat dan sesuai dengan karakter peserta didik.
Representative chemistry is an essential concept in understanding chemistry. The most significant impact of using the idea of representation-based chemistry learning is that it can reduce the level of misconceptions that are mushrooming in chemistry learning gradually so that the negative paradigm about chemistry can be lost. Besides, indicators of the success of learning chemistry are positively related to the development of students' understanding and learning styles in the classroom. This activity aims to disseminate the concept of chemical representation and learning styles (multiple intelligence & self-efficacy) in chemistry learning. The method used is the formal socialization method. Data collection techniques are documentation, observation, and interview techniques to obtain precise information from the respondents. The activity results show that teachers still do not know the importance of analyzing students' needs and learning styles before learning occurs. This activity has a significant impact, especially on how to make changes in learning chemistry. This means that the Multi Representation of Chemistry & Learning Style (Multiple Intelligence-Self Efficacy) is a bridge as strengthening & reconstruction of knowledge in teaching and learning chemistry. Especially for teachers, analyzing students' learning needs is an initial reference in designing an appropriate learning model and following students' character.
Keywords
Full Text:
PDFReferences
Ardac, D., & Akaygun, S. (2012). Using Static and Dynamic Visuals to Represent Chemical Change at Using Static and Dynamic Visuals to Represent Chemical Change at. International Journal of Science Education, 27(11), 1269–1298. https://doi.org/10.1080/09500690500102284
Avargil, S., Bruce, M. R. M., Amar, F. G., & Bruce, A. E. (2015). Students’ Understanding of Analogy after a CORE (Chemical Observations, Representations, Experimentation) Learning Cycle, General Chemistry Experiment. Journal of Chemical Education, 92(10), 1626–1638. https://doi.org/10.1021/acs.jchemed.5b00230
Avcı, F., Şeşen, B. A., & Kırbaşlar, F. G. (2014). Determination of Seventh Grade Students’ Understanding of Certain Chemistry Concepts. Procedia - Social and Behavioral Sciences, 152, 602–606. https://doi.org/10.1016/j.sbspro.2014.09.250
Avraamidou, L. (2016). Studying science teacher identity: Theoretical , methodological and empirical explorations. New Directions in Mathematics and Science Education. https://doi.org/10.1007/978-94-6300-528-9
Barke, H. D., Hazari, A., & Yitbarek, S. (2009). Misconceptions in Chemistry (Addresing Perceptions in Chemical Education). Berlin, Heidelberg: Sense Publisher. https://doi.org/10.1007/978-3-540-70989-3_2
Barke, H., Harsch, G., & Schmid, S. (2012). Essentials of Chemical Education. Verlag Berlin Heidelberg: springer. https://doi.org/10.1017/CBO9781107415324.004
Becker, N., Stanford, C., Towns, M., & Cole, R. (2015). Translating across macroscopic, submicroscopic, and symbolic levels: The role of instructor facilitation in an inquiry-oriented physical chemistry class. Chemistry Education Research and Practice, 16(4), 769–785. https://doi.org/10.1039/c5rp00064e
Berkel, B. Van, Pilot, A., & Bulte, A. M. W. (2009). Micro-Macro Thinking in Chemical Education: Why and How to Escape. In J. K. Gilbert & D. F. Treagust (Eds.), Multiple Representations in Chemical Education, MOdels and Modeling in Science Education (pp. 31–54). Berlin, Heidelberg: Springer Science + Business. https://doi.org/10.1007/978-1-4020-8872-8_3
Boris. (2019). Pembekalan guru inti peningkatan kompetensi pembelajaran (pkp) mapel fisika, kimia, dan biologi sma.
Bruce, M. R. M., Bruce, A. E., Avargil, S., Amar, F. G., Wemyss, T. M., & Flood, V. J. (2016). Polymers and Cross-Linking: A CORE Experiment to Help Students Think on the Submicroscopic Level. Journal of Chemical Education, 93(9), 1599–1605. https://doi.org/10.1021/acs.jchemed.6b00010
Caltabiano, N., Hajhashemi, K., & Anderson, N. (2017). Multiple Intelligences, Motivations and Learning Experience Regarding Video-Assisted Subjects in a Rural University. International Journal of Instruction, 11(1), 167–182. https://doi.org/10.12973/iji.2018.11112a
Chen, X., de Goes, L. F., Treagust, D. F., & Eilks, I. (2019). An analysis of the visual representation of redox reactions in secondary chemistry textbooks from different chinese communities. Education Sciences. https://doi.org/10.3390/educsci9010042
Creswell, J. W. (2014). Research Design Qualitative, Quantitative, and Mixed Methods Approaches. USA: SAGE Publications, Inc.
Darmiyanti, W., Rahmawati, Y., Kurniadewi, F., & Ridwan, A. (2017). Analisis Model Mental Siswa Dalam Penerapan Model Pembelajaran Learning Cycle 8E Pada Materi Hidrolisis Garam. JRPK: Jurnal Riset Pendidikan Kimia, 7(1), 38–51. https://doi.org/10.21009/jrpk.071.06
Dincol, Ozgur, S. (2018). The Effect of Learning Styles on Prospective Chemistry and Science Teachers’ Self-Regulated Learning Skills. Cypriot Journal of Educational Sciences, 13(4), 521–528. https://doi.org/10.18844/cjes.v13i4.3185
Dunca, A. M. (2018). Water pollution and water quality assessment of major transboundary rivers from Banat (Romania). Journal of Chemistry, 2018. https://doi.org/10.1155/2018/9073763
Durmaz, M. (2018). Determination of Prospective Chemistry Teachers’ Cognitive Structures and Misconceptions About Stereochemistry. Journal of Education and Training Studies, 6(9), 13. https://doi.org/10.11114/jets.v6i9.3353
Ekiz, B., Tarkin, A., Bektas, O., Tuysuz, M., Kutucu, E. S., & Uzuntiryaki, E. (2011). Pre-service chemistry teachers’ understanding of phase changes and dissolution at macroscopic, symbolic, and microscopic levels. Procedia - Social and Behavioral Sciences, 15, 452–455. https://doi.org/10.1016/j.sbspro.2011.03.120
Farida, I., Helsy, I., Fitriani, I., & Ramdhani, M. A. (2018). Learning Material of Chemistry in High School Using Multiple Representations. IOP Conference Series: Materials Science and Engineering, 288(1), 8–13. https://doi.org/10.1088/1757-899X/288/1/012078
Figueiredo, M., Neves, J., & Gomes, G. (2016). Assessing the Role of General Chemistry Learning in Higher Education. In 2nd International Conference on Higher Education Advances, HEAd´16, 21-23 June 2016, València, (Vol. 228, pp. 161–168). https://doi.org/10.1016/j.sbspro.2016.07.024
Forbes, C. T., & Davis, E. A. (2008). Exploring preservice elementary teachers’ critique and adaptation of science curriculum materials in respect to socioscientific issues. Science and Education, 17(8–9), 829–854. https://doi.org/10.1007/s11191-007-9080-z
Gilbert, J. K., & Treagust, D. F. (2009). Introduction: Macro, Submicro and Symbolic Representations and the Relationship Between Them: Key Models in Chemical Education. In Multiple Representations in Chemical Education, MOdels and Modeling in Science Education (pp. 1–8). Berlin, Heidelberg: Springer Science + Business. https://doi.org/10.1007/978-1-4020-8872-8_1
Hanafin, J. (2014). Multiple intelligences theory, action research, and teacher professional development: The irish MI project. Australian Journal of Teacher Education, 39(4), 126–142. https://doi.org/10.14221/ajte.2014v39n4.8
Head, M. L., Yoder, K., Genton, E., & Sumperl, J. (2017). A quantitative method to determine preservice chemistry teachers’ perceptions of chemical representations. Chemistry Education Research and Practice, 18(4), 825–840. https://doi.org/10.1039/c7rp00109f
Indrawati, W., Suyatno., & Rahayu, Y. S. (2015). Implementasi Model Learning Cycle 7E Pada Pembelajaran Kimia Dengan Materi Pokok. Jurnal Penelitian Pendidikan Sains, 5(1), 788–794.
Insyasiska, D., Zubaidah, S., & Susilo, H. (2015). Pengaruh Project Based Learning Terhadap Motivasi Belajar, Kreatifitas, Kemampuan Berpikir Kritis, dan Kemamppuan Kognitif Siswa Pada Pembelajaran Biologi. Jurnal Pendidikan Biologi, 7(1), 9–21.
Jho, H., Hong, O., & Song, J. (2016). An analysis of STEM/STEAM teacher education in Korea with a case study of two schools from a community of practice perspective. Eurasia Journal of Mathematics, Science and Technology Education, 12(7), 1843–1862. https://doi.org/10.12973/eurasia.2016.1538a
Kahveci, A. (2009). Exploring chemistry teacher candidates’ profile characteristics, teaching attitudes and beliefs, and chemistry conceptions. Chemistry Education Research and Practice, 10(2), 109–120. https://doi.org/10.1039/b908248b
Kasjuaji, K. (2018). 4 Jenis Sosialisasi dan Contohnya.
Kozma, R., Chin, E., Russell, J., & Marx, N. (2000). Students’ mind wandering in macroscopic and submicroscopic textual narrations and its relationship with their reading comprehension. Journal of Chemical Education, 9(1), 105–143. https://doi.org/10.15294/jpii.v7i4.16219
Kurniawan, A., Rustaman, N. Y., Kaniawati, I., & Hasanah, L. (2017). Profile of Cognitive Ability and Multiple Intelligence of Vocational Students in Application of Electric Energy Conservation. Journal of Physics: Conference Series, 895(1). https://doi.org/10.1088/1742-6596/895/1/012165
Legiman, M. P. (2016). Penelitian Tindakan Kelas (Ptk). Widyaiswara LPMP D.I. Yogyakarta, 1–15.
Levy, S. T., & Wilensky, U. (2009). Crossing levels and representations: The connected chemistry (CC1) curriculum. Journal of Science Education and Technology, 18(3), 224–242. https://doi.org/10.1007/s10956-009-9152-8
Liang, J. C., Chou, C. C., & Chiu, M. H. (2011). Student test performances on behavior of gas particles and mismatch of teacher predictions. Chemistry Education Research and Practice, 12(2), 238–250. https://doi.org/10.1039/c1rp90029c
Mahaffy, P. (2006). Moving chemistry education into 3D: A tetrahedral metaphor for understanding chemistry: Union carbide award for chemical education. Journal of Chemical Education, 83(1), 49–55.
Marson, G. A., & Torres, B. B. (2011). Fostering multirepresentational levels of chemical concepts: A framework to develop educational software. Journal of Chemical Education, 88(12), 1616–1622. https://doi.org/10.1021/ed100819u
Martin, J. D., & Nock, K. A. (2018). A Nonlinear, “sticky” Web of Study for Chemistry: A Graphical Curricular Tool for Teaching and Learning Chemistry Built upon the Interconnection of Core Chemical Principles. Journal of Chemical Education, 95(12), 2134–2140. https://doi.org/10.1021/acs.jchemed.7b00878
Milenković, D. D., Segedinac, M. D., & Hrin, T. N. (2014). Increasing high school students’ chemistry performance and reducing cognitive load through an instructional strategy based on the interaction of multiple levels of knowledge representation. Journal of Chemical Education, 91(9), 1409–1416. https://doi.org/10.1021/ed400805p
Ni’mah, Z. A. (2017). Urgensi penelitian tindakan kelas bagi peningkatan profesionalitas guru antara cita dan fakta. realita, 15(2), 1–11. https://doi.org/10.1016/j.det.2012.08.002
Nilsson, P., & Karlsson, G. (2019). Capturing student teachers’ pedagogical content knowledge (PCK) using CoRes and digital technology. International Journal of Science Education, 41(4), 419–447. https://doi.org/10.1080/09500693.2018.1551642
Ortiz-nieves, E. L., & Medina, Z. (2014). A Hands-On Activity Incorporating the Threefold Representation on Limiting Reactant. Journal of Chemical Education, 91(9), 1464–1467.
Ott, N., Brünken, R., Vogel, M., & Malone, S. (2018). Multiple symbolic representations: The combination of formula and text supports problem solving in the mathematical field of propositional logic. Learning and Instruction, 58(April), 88–105. https://doi.org/10.1016/j.learninstruc.2018.04.010
Pande, P., & Chandrasekharan, S. (2017). Representational competence: towards a distributed and embodied cognition account. Studies in Science Education, 53(1), 1–43. https://doi.org/10.1080/03057267.2017.1248627
Pratiwi, W. ., Rochintaniawati, D., & Agustin, R. R. (2018). The effect of multiple intelligence-based learning towards students ’ concept mastery and interest in learning matter The effect of multiple intelligence-based learning towards students ’ concept mastery and interest in learning matter. IOP Conference Series.
Purwanto, M. G., & Nurliani, R. (2017). Assessment in Science Education. International Conference on Mathematics and Science Education, 1–6.
Rahmawati, Y. (2018). Peranan Transformative Learning dalam Pendidikan Kimia: Pengembangan Karakter, Identitas Budaya, dan Kompetensi Abad ke-21 Yuli. Jurnal Riset Pendidikan Kimia, 8(1), 1–16.
Ratnasari, I. T., Wardani, S., & Nuswowati, M. (2018). The Impact of Multiple Intelligences Approach through Quantum Teaching Model toward The Scientific Attitude and Science Learning Outcomes in The Fourth Grade Students. Journal of Primary Education, 7(2), 146–154.
Ryan, S., & Herrington, D. G. (2014). Sticky Ions : A Student-Centered Activity Using Magnetic Models to Explore the Dissolving of Ionic Compounds. Journal of Chemical Education, 91, 860–863.
Sa, Y., & Dost, S. (2014). Preservice science and mathematics teachers ’ beliefs about mathematical problem solving. Procedia - Social and Behavioral Sciences, 116(1992), 303–306. https://doi.org/10.1016/j.sbspro.2014.01.212
Sahoo, P. K., & Chandra, S. (2014). A Study of the Relationship between Students’ Learning Styles and Instructional Inputs in a Teacher Education Programme of IGNOU. Asian Association of Open Universities Journal, 9(1), 17–34. https://doi.org/10.1108/aaouj-09-01-2014-b003
Sastrika, I. A. K., Sadia, I. W., & Muderawan, I. W. (2016). Pengaruh Model Pembelajaran Berbasis Proyek terhadap Pemahaman Konsep Kimia dan Keterampilan Berpikir Kritis. E-Journal Program Pascasarjana Universitas Pendidikan Ganesha, 3(2), 194–204.
Savec, V. F., Urankar, B., Aksela, M., & Devetak, I. (2017). Prospective chemistry teachers’ perceptions of their profession: the state of the art in Slovenia and Finland. Journal of the Serbian Chemical Society, 82(10), 1193–1210. https://doi.org/10.2298/JSC161221083S
Şener, S., & Çokçalışkan, A. (2018). An Investigation between Multiple Intelligences and Learning Styles. Journal of Education and Training Studies, 6(2), 125. https://doi.org/10.11114/jets.v6i2.2643
Stolk, M. J., Bulte, A. M. W., de Jong, O., & Pilot, A. (2009). Strategies for a professional development programme: Empowering teachers for context-based chemistry education. Chemistry Education Research and Practice, 10(2), 154–163. https://doi.org/10.1039/b908252m
Streller, S., & Bolte, C. (2018). Becoming a chemistry teacher - Expectations for chemistry education courses. Nordic Studies in Science Education, 14(2), 125–137. https://doi.org/10.5617/nordina.6162
Sulistyawati, A. H., Parubak, A. S., & Suparman, A. R. (2018). Perbandingan model pembelajaran dan gaya peserta didik pada pokok bahasan hidrokarbon Comparative of Learning Models and Learning Styles to Students ’ Cognitive Learning Outcomes on Hydrocarbons Subject. QUANTUM: Jurnal Inovasi Pendidikan Sains, 9(2), 100–106.
Taçgin, Z., Uluçay, N., & Özüağ, E. (2016). Designing and Developing an Augmented Reality Application: A Sample Of Chemistry Education. Turkiye Kimya Dernegi Dergisi Kisim C: Kimya Egitimi, 1(1), 147–164.
Treagust, D. F., Chittleborough, G., & Mamiala, T. L. (2003). The role of submicroscopic and symbolic representations in chemical explanations. International Journal of Science Education, 25(11), 1353–1368. https://doi.org/10.1080/0950069032000070306
Trivic, D. D., & Milanovic, V. D. (2018). The macroscopic, submicroscopic and symbolic level in explanations of a chemical reaction provided by thirteen-year olds. Journal of the Serbian Chemical Society, 83(10), 1177–1192. https://doi.org/10.2298/JSC171220055T
Widayati, A. (2019). Penelitian Tindakan Kelas. Jurnal Pendidikan Akuntansi Indonesia, 6(1), 87–93. https://doi.org/10.21831/jpai.v6i1.1793
Yanuarti, N. R & Azizah, U. (2013). Pengembangan Lembar Kegiatan Siswa Berorientasi Learning Cycle 7-E Pada Materi Pokok Kesetimbangan Kimia Untuk Melatih Keterampilan Berpikir Kritis the Development of Student Activity With Learning Cycle 7- E Orientation in Main Material of Chemical Equil. Unesa Journal of Chemical Education, 2(2), 32–38.
Yuanita, L., & Ibrahim, M. (2015). Mental Model of Students on Stoichiometry Concept in Learning by Method Based on Multiple representation. The Online Journal of New Horizon in Education, 5(2), 30–45.
Zoller, U., & Pushkin, D. (2007). Matching Higher-Order Cognitive Skills (HOGS) promotion goals with problem-based laboratory practice in a freshman organic chemistry course. Chemistry Education Research and Practice, 8(2), 153–171. https://doi.org/10.1039/B6RP90028C
DOI: https://doi.org/10.20527/btjpm.v3i2.2740
Refbacks
- There are currently no refbacks.
Indexed by: Bubungan Tinggi: Jurnal Pengabdian Masyarakat is licensed under From March 27, 2020 to June 3, 2020 From Juni 4, 2020 to the present (updated stats) |