Pelatihan Peningkatan Kemampuan Guru untuk Mengidentifikasi Miskonsepsi Peserta Didik Pada Pembelajaran Kimia Bagi Guru Kimia Se-Kalimantan Selatan
Abstract
Pembelajaran kimia sangat sensitif terhadap perspektif peserta didik. Ketika peserta didik tidak diarahkan dengan tepat maka akan berpeluang munculnya miskonsepsi. Tujuan kegiatan Pengabdian kepada Masyarakat (PkM) ini adalah 1) mendeskripsikan cara meningkatkan kemampuan guru dalam mengidentifikasi miskonsepsi peserta didik, dan 2) efektivitas pelatihan yang dilakukan terhadap peningkatan kemampuan guru dalam mengidentifikasi miskonsepsi peserta didik. Pelatihan ini diikuti oleh guru SMA yang tergabung dalam MGMP guru kimia. Teknik pengumpulan data yaitu teknik dokumentasi, observasi, dan wawancara agar memeproleh informasi yang jelas dari para responden. Teknik analisis data menggunakan analisis kualitatif dengan tujuan untuk mendeskripsikan fenomena yang terjadi selama proses kegiatan. Hasil kegiatan PkM diperoleh bahwa cara untuk meningkatkan kemampuan guru dalam mengidentifikasi miskonsepsi peserta didik yakni, 1) mengembangkan suatu tes diagnostik berbasis pilihan ganda/essai, 2) melakukan tes diagnostik kepada peserta didik baik sebelum ataupun sesudah proses pembelajaran, dan 3) menyajikan materi kimia dengan mengintegrasi fenomena atau kehidupan sehari-hari. Kemudian, efektivitas pelatihan yang dilakukan terhadap peningkatan kemampuan guru dalam mengidentifikasi miskonsepsi peserta didik yakni dengan menyajikan konsep belajar kimia berbasis kimia representasi. Kegiatan ini menjadi salah satu strategi dalam mereduksi miskonsepsi peserta didik.
Chemistry learning is very sensitive to students' perspectives. When students are not appropriately directed, there will be opportunities for misconceptions to arise. The objectives of this Community Service activity are 1) to describe how to improve the teacher's ability to identify student misconceptions, and 2) the effectiveness of the training carried out to increase the teacher's ability to identify student misconceptions. This training was attended by high school teachers who are members of the chemistry teacher MGMP. Data collection techniques are documentation, observation, and interview techniques to obtain clear information from the respondents. The data analysis technique uses qualitative analysis to describe the phenomena that occur during the activation process. The results of the community service activity showed that the ways to improve the teacher's ability to identify students' misconceptions were, 1) developing a multiple-choice/essay-based diagnostic test, 2) conducting diagnostic tests to students both before and after the learning process, and 3) presenting chemistry material by integrating phenomena of everyday life. Then, the effectiveness of the training carried out on improving the ability of teachers to identify students' misconceptions is by presenting the concept of learning chemistry based on representational chemistry. This activity is one of the strategies in reducing students' misconceptions.
Keywords
Full Text:
PDFReferences
Barke, Hand-Dieter, Hazari, A., & Yitbarek, S. (2009). Misconceptions in chemistry (Addresing perceptions in chemical education). Sense Publisher. https://doi.org/10.1007/978-3-540-70989-3_2
Barke, Hans-Dieter, Harsch, G., & Schmid, S. (2012). Essentials of chemical education. Springer. https://doi.org/10.1017/CBO9781107415324.004
Becker, N., Stanford, C., Towns, M., & Cole, R. (2015). Translating across macroscopic, submicroscopic, and symbolic levels: The role of instructor facilitation in an inquiry-oriented physical chemistry class. Chemistry Education Research and Practice, 16(4), 769–785. https://doi.org/10.1039/c5rp00064e
Berkel, Berry, V., Pilot, A., & Bulte, Astrid, M, W. (2009). Micro-macro thinking in chemical education: Why and how to escape. In J. K. Gilbert & D. F. Treagust (Eds.), Multiple representations in chemical education, models and modeling in science education, 31–54. springer science + Business. https://doi.org/10.1007/978-1-4020-8872-8_3
Chandrasegaran, A. L., Treagust, D. F., & Mocerino, M. (2009). Emphasizing multiple levels of representation to enhance students’ understandings of the changes occurring during chemical reactions. In Journal of Chemical Education (Vol. 86, Issue 12, pp. 1433–1436). https://doi.org/10.1021/ed086p1433
Clark, A. (1999). Qualitative inquiry and research design: Choosing among five traditions, by John W. Cresswell. In Western Journal of Nursing Research (Vol. 21, Issue 1, pp. 103–105).
Durmaz, M. (2018). Determination of prospective chemistry teachers’ cognitive structures and misconceptions about stereochemistry. Journal of Education and Training Studies, 6(9), 13. https://doi.org/10.11114/jets.v6i9.3353
Erlina, Cane, C., & Williams, D. P. (2018). Prediction! the VSEPR game: Using cards and molecular model building to actively enhance students’ understanding of molecular geometry. Journal of Chemical Education, 95(6), 991–995. https://doi.org/10.1021/acs.jchemed.7b00687
Gilbert, J. K., & Treagust, D. F. (2009). Introduction: Macro, submicro and symbolic representations and the relationship between them: key models in chemical education. In Multiple Representations in Chemical Education, MOdels and Modeling in Science Education, 1–8. Springer Science + Business. https://doi.org/10.1007/978-1-4020-8872-8_1
Hadinugrahaningsih, T., Rahmawati, Y., & Ridwan, A. (2017). Developing 21st century skills in chemistry classrooms: Opportunities and challenges of STEAM integration. The 4th Intrenational Conference on Research, Implementation, and Education of Mathematics and Science (ICRIEMS), 1868(August), 030008-1-030008–8. https://doi.org/10.1063/1.4995107
Kahveci, A. (2009). Exploring chemistry teacher candidates’ profile characteristics, teaching attitudes and beliefs, and chemistry conceptions. Chemistry Education Research and Practice, 10(2), 109–120. https://doi.org/10.1039/b908248b
Kasjuaji, K. (2018). 4 Jenis sosialisasi dan contohnya. Ilmugeografi.Com. https://ilmugeografi.com/ilmu-sosial/jenis-sosialisasi
Kask, K., Ploomipuu, I., & Rannikmäe, M. (2015). Changes in cognitive skills during a gymnasium chemistry course. Global Conference on Contemporary Issues in Education, GLOBE-EDU 2014, 12-14 July 2014, Las Vegas, USA, 177(July 2014), 367–371. https://doi.org/10.1016/j.sbspro.2015.02.363
Koballa, T. R., Gräber, W., Coleman, D., & Kemp, An. C. (2017). Prospective teachers ’ conceptions of the knowledge base for teaching chemistry at the german gymnasium author ( s ): Thomas R . Koballa , Jr ., Wolfgang Gräber , Dava Coleman and Andrew C . Kemp Published by : Springer Stable URL : http://www.jstor.org/s. Journal of Science Teacher Education, 10(4), 269–286.
Mubarak, S. (2016). Pengembangan tes diagnostik three tier multiple choice. Journal of Innovative Science Education, 5(2), 101–110.
Nurhidayah, N., Suharto, B., & Leny, L. (2020). Penerapan model pembelajaran inkuiri terbimbing materi reaksi redoks. JCAE: Journal of Chemistry And Education, 4(2), 67–72.
Ozmen, H. (2004). Some student misconceptions in chemistry : A literature review of chemical some student misconceptions in chemistry. Journal OfScience Education and Technology, 13(2), 147–159. https://doi.org/10.1023/B
Park, M., Liu, X., & Waight, N. (2017). Development of the connected chemistry as formative assessment pedagogy for high school chemistry teaching. Journal of Chemical Education, 94(3), 273–281. https://doi.org/10.1021/acs.jchemed.6b00299
Purwanto, M. G., & Nurliani, R. (2017). Assessment in science education. International Conference on Mathematics and Science Education, 1–6.
Runnels, J. (2012). Using the rash model to validate a multiple choice english achievement test. International Journal of Language Studies, 6(4), 141–155.
Ryan, S., & Herrington, D. G. (2014). Sticky ions : A student-centered activity using magnetic models to explore the dissolving of ionic compounds. Journal of Chemical Education, 91, 860–863.
Saif, A. D. A. (2016). The nature of science as viewed by science teachers in najran district, saudi arabia. Journal of Education and Practice, 7(12), 147–153.
Shah, L., Schneider, J., Fallin, R., Linenberger Cortes, K., Ray, H. E., & Rushton, G. T. (2018). What prospective chemistry teachers know about chemistry: an analysis of praxis chemistry subject assessment category performance. Journal of Chemical Education, 95(11), 1912–1921. https://doi.org/10.1021/acs.jchemed.8b00365
Shui-Te, L., Kusuma, I. W., Wardani, S., & Harjito. (2018). Hasil Identifikasi miskonsepsi siswa ditinjau dari aspek makroskopis, mikroskopis, dan simbolik (mms) pada pokok bahasan partikulat sifat materi di taiwan. Jurnal Inovasi Pendidikan Kimia, 12(1).
Sözbilir, M., Pinarbaşi, T., & Canpolat, N. (2010). Prospective chemistry teachers’ conceptions of chemical thermodynamics and kinetics. Eurasia Journal of Mathematics, Science and Technology Education, 6(2), 111–121. https://doi.org/10.12973/ejmste/75232
Sprague, E., Siegert, R. J., Medvedev, O., & Roberts, M. H. (2018). Rasch Analysis of the edmonton symptom assessment system. Journal of Pain and Symptom Management, 55(5), 1356–1363. https://doi.org/10.1016/j.jpainsymman.2018.01.016
Sumintono, B., & Widhiarso, W. (2015). Aplikasi pemodelan rasch pada assessment pendidikan. Penerbit Trim Komunikata.
Taber, K. S. (2001). The mismatch between assumed prior knowledge and the learner’s conceptions: A typology of learning impediments. Educational Studies, 27(2), 159–171. https://doi.org/10.1080/03055690120050392
Taber, K. S. (2018). Alternative conceptions and the learning of chemistry. Israel Journal of Chemistry, 58, 1–21. https://doi.org/10.1002/ijch.201800046
Treagust, D. F., Chittleborough, G., & Mamiala, T. L. (2003). The role of submicroscopic and symbolic representations in chemical explanations. International Journal of Science Education, 25(11), 1353–1368. https://doi.org/10.1080/0950069032000070306
Trivic, D. D., & Milanovic, V. D. (2018). The macroscopic, submicroscopic and symbolic level in explanations of a chemical reaction provided by thirteen-year olds. Journal of the Serbian Chemical Society, 83(10), 1177–1192. https://doi.org/10.2298/JSC171220055T
Üce, M., & Ceyhan, İ. (2019). Misconception in chemistry education and practices to eliminate them: Literature analysis. Journal of Education and TRaining Studies, 7(3), 202–208. https://doi.org/10.11114/jets.v7i3.3990
Utami, D. B., Rahmawati, Y., & Slamet, R. (2017). Penggunaan conceptual change text dengan model pembelajaran 5e untuk mengatasi miskonsepsi siswa pada materi asam basa di sman 4 tambun selatan. Jurnal Pendidikan Kimia, 1(1), 30–37.
Wahidah, N., & Saptono, S. (2018). The Development of three tier multiple choice test to explore junior high school students ’ scientific literacy misconceptions. Journal of Innovation Science Education, 7(2), 434–442.
DOI: https://doi.org/10.20527/btjpm.v3i4.2757
Refbacks
- There are currently no refbacks.
Indexed by: Bubungan Tinggi: Jurnal Pengabdian Masyarakat is licensed under From March 27, 2020 to June 3, 2020 From Juni 4, 2020 to the present (updated stats) |