BILANGAN INVERS DOMINASI TOTAL PADA GRAF BUNGA DAN GRAF TRAMPOLIN

Febby Desy Lia, Nilamsari Kusumastuti, Fransiskus Fran

Program Studi Matematika Fakultas MIPA Universitas Tanjungpura Pontianak Jl. Prof. Dr. H. Hadari Nawawi, 78124, Kalimantan Barat email: febbydesylia14@student.untan.ac.id

ABSTRACT

Given a simple, finite, undirected, and contains no isolated vertices graph G = (V(G), E(G)), with V(G) is the set of vertices in G, and E(G) is the set of edges in G. The set $D_t \subseteq V(G)$ is called the total dominating set in graph G if every vertex in V(G) is adjacent to at least one vertex in D_t . Suppose D_t is the total domination set with minimum cardinality of the graph G. In that case $V(G) - D_t$ contains another total domination set, for example, D_t^{-1} , then D_t^{-1} is called the inverse set of total domination respect with D_t . The minimum cardinality of the inverse set of total domination is called the inverse of total domination number which is denoted by $\gamma_t^{-1}(G)$. The set of total domination and inverse total domination is not unique. A graph that has a total domination set does not necessarily have an inverse total domination set. Determination of the inverse total domination number, starting with determining the minimum total dominating set, which is used as a reference to determine the inverse total dominating set. If the set of the inverse of total domination is obtained with minimum cardinality, then the number of the inverse of total domination can be determined. In this study, exact values are found of $\gamma_t^{-1}(Fl_n)$, $n \geq 3$ and $n \in \mathbb{N}$ and $\gamma_t^{-1}(T(K_n))$, $n \geq 4$, $n \in \mathbb{N}$ is even and $n \in \mathbb{N}$, where Fl_n be a flower graph and $T(K_n)$ be a trampoline graph. For $n \geq 3$, $n \in \mathbb{N}$ is odd and $n \in \mathbb{N}$, the trampoline graph has no inverse total dominating set.

Keywords: domination number, total domination number, inverse total domination

ABSTRAK

Diberikan G = (V(G), E(G)) adalah graf sederhana, berhingga, tidak berarah dan tidak memuat simpul terasing, dengan V(G) adalah himpunan simpul pada G dan E(G) adalah himpunan sisi pada G. Himpunan $D_t \subseteq V(G)$ disebut himpunan dominasi total pada graf G jika untuk setiap simpul pada V(G) bertetangga dengan minimum satu simpul di D_t . Jika D_t merupakan himpunan dominasi total dengan kardinalitas minimum dari graf G dan $V(G) - D_t$ memuat himpunan dominasi total lain, misalnya D_t^{-1} , maka D_t^{-1} disebut himpunan invers dominasi total relatif terhadap D_t . Kardinalitas minimum dari himpunan invers dominasi total disebut bilangan invers dominasi total dinotasikan $\gamma_t^{-1}(G)$. Himpunan dominasi total dan invers dominasi total tidak tunggal. Suatu graf yang mempunyai himpunan dominasi total belum tentu memiliki himpunan invers dominasi total. Penentuan bilangan invers dominasi total, dimulai dengan menentukan himpunan dominasi total minimum, yang digunakan sebagai acuan untuk menentukan himpunan invers dominasi total. Jika diperoleh himpunan invers dominasi total dengan kardinalitas minimum, maka dapat ditentukan bilangan invers dominasi totalnya. Pada penelitian ini, diperoleh bilangan invers dominasi total pada graf bunga (Fl_n) dengan $n \geq 3$, $n \in \mathbb{N}$ dan bilangan invers dominasi total pada graf trampolin $(T(K_n))$ dengan $n \ge 4$, n genap dan $n \in \mathbb{N}$. Lebih lanjut, graf trampolin tidak memiliki himpunan invers dominasi total, jika $n \ge 3$, n ganjil dan $n \in \mathbb{N}$

Kata kunci: bilangan dominasi, bilangan dominasi total, himpunan invers dominasi total

Received: 6 April 2022 Accepted: 14 Mei 2022 Published: 17 Juni 2022

PENDAHULUAN

Teori graf merupakan bagian dari matematika diskret yang secara spesifik mempelajari tentang graf yang direpresentasikan melalui objek-objek diskret dan hubungan antara objek-objek diskret. Adapun representasi visual dari graf dinyatakan melalui simpul, sementara hubungan antara objek dinyatakan melalui sisi (Munir, 2010). Seiring berjalannya waktu, topik-topik bahasan dalam teori graf mengalami perkembangan, satu diantaranya adalah himpunan dominasi. Sejarah himpunan dominasi dimulai ketika Carl Friendrich De Jaenish mempelajari masalah "dominasi ratu". De Jaenish menentukan jumlah minimum ratu yang dibutuhkan untuk menutupi papan catur berukuran 8 × 8, dengan menggunakan himpunan dominasi sebagai penentu banyaknya ratu sehingga setiap ratu dapat mendominasi atau menyerang setiap posisi dalam satu kali perpindahan (Chartrand, dkk., 2016). Himpunan dominasi sudah dikenal lebih dari 1 abad dan terus dikembangkan. Beberapa diantaranya yaitu himpunan dominasi total, himpunan invers dominasi dan himpunan invers dominasi total.

Himpunan invers dominasi total pertama kali diperkenalkan oleh Kulli dan Iyer pada tahun 2007. Dimisalkan himpunan $D_t \subseteq V(G)$ merupakan himpunan dominasi total dengan kardinalitas minimum, jika $V(G) - D_t$ memuat himpunan dominasi total lain, misalnya D_t^{-1} , maka D_t^{-1} disebut himpunan invers dominasi total relatif terhadap D_t . Kardinalitas minimum dari himpunan invers dominasi total disebut bilangan invers dominasi total yang dinotasikan dengan $\gamma_t^{-1}(G)$ (Kulli & Iyer, 2007). Kajian mengenai bilangan dominasi, dominasi total, invers dominasi dan invers dominasi total telah menarik minat banyak peneliti. Beberapa diantaranya membahas mengenai graf dengan bilangan dominasi dan invers dominasi total yang sama (Kulli, 2016a), kemudian juga membahas invers dominasi total pada graf hasil operasi (Kulli, 2016b), invers dominasi dan invers dominasi total pada graf berarah (Kaleeswari & Sathya, 2020), invers dominasi dan invers dominasi total pada graf yang tidak berarah (Kauser, dkk., 2020), serta membahas invers dominasi pada graf multi fuzzy (Muthuraj & Revathi, 2021).

Penerapan himpunan invers dominasi total dapat ditemukan dalam jaringan komputer. Dimisalkan ada jaringan komputer dengan kelompok inti yang bertindak sebagai server dan memiliki kemampuan untuk berkomunikasi secara langsung dengan setiap komputer di luar kelompok inti. Selain itu, setiap server secara langsung terhubung dengan minimum satu server cadangan lainnya tempat informasi duplikat disimpan. Kelompok inti minimum dengan atribut ini adalah himpunan dominasi total dari graf yang direpresentasikan dalam jaringan. Jika kelompok inti kedua diperlukan, maka kelompok ini dinyatakan sebagai suatu himpunan dominasi total berbeda yang saling asing dari himpunan sebelumnya. Kelompok kedua ini akan memberikan duplikasi jika terjadi kerusakan pada kelompok pertama. Oleh sebab itu, kelompok kedua dinyatakan sebagai himpunan invers dominasi total (Kulli & Iyer, 2007).

Febby Desy Lia, Nilamsari Kusumastuti, Fransiskus Fran – Bilangan Invers Dominasi

Berdasarkan hasil penelitian yang telah dilakukan oleh Febrianti, dkk pada tahun 2019, mengenai bilangan dominasi dan bilangan invers dominasi pada graf ular, diperoleh bahwa jika suatu graf (terhubung) memiliki himpunan dominasi, maka graf tersebut memiliki himpunan invers dominasi (Febrianti, dkk., 2019). Sementara itu, jika suatu graf memiliki himpunan dominasi total, maka belum tentu graf tersebut memiliki himpunan invers dominasi total (Kulli & Iyer, 2007). Dari kasus tersebut, himpunan invers dominasi totalnya tidak dapat ditentukan.

Untuk itu, pada penelitian ini dibahas mengenai bilangan invers dominasi total pada beberapa kelas graf untuk mengetahui kondisi sehingga kelas graf tersebut memiliki himpunan invers dominasi total. Pada kondisi ini, graf bunga dan graf trampolin dapat ditentukan bilangan invers dominasi totalnya. Secara khusus, kelas graf yang dibahas merupakan kelas graf yang memuat sikel (bukan pohon) yaitu graf bunga (Fl_n) dan graf trampolin $(T(K_n))$ untuk sebarang $n \in \mathbb{N}$ dan $n \geq 3$. Graf bunga merupakan graf yang dibentuk dari graf helm sedangkan graf trampolin dibentuk dari graf lengkap. Graf helm dan graf lengkap K_3 merupakan graf yang tidak memiliki himpunan invers dominasi total. Graf lengkap K_n untuk $n \geq 4$ memiliki $\gamma_t^{-1}(K_n) = 2$.

TINJAUAN PUSTAKA

1. Beberapa Jenis Graf

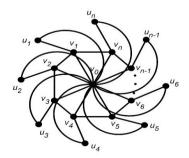
Graf G didefinisikan sebagai pasangan himpunan simpul V(G) dan himpunan sisi E(G), dengan V(G) adalah himpunan tidak kosong dari simpul-simpul dan E(G) adalah himpunan sisi yang menghubungkan sepasang simpul. Sebuah graf G harus memiliki minimum satu simpul dan memungkinkan untuk tidak memiliki sisi (Munir, 2010).

Diberikan suatu graf G, dengan graf G merupakan graf sikel jika setiap simpulnya berderajat dua dan dinotasikan sebagai C_n . Selanjutnya, jika setiap simpulnya memiliki sisi ke semua simpul lainnya, maka disebut graf lengkap (K_n) (Munir, 2010). Jika graf yang memuat sikel untuk setiap simpul pada sikel terhubung langsung dengan simpul pusat maka disebut graf roda (W_n) (Chartrand, dkk., 2016). Kemudian, jika graf yang diperoleh dari sebuah graf roda dengan menambahkan sisi anting-anting pada setiap simpul maka disebut graf helm (H_n) (Gallian, 2007). Graf yang dibahas pada penelitian ini adalah graf bunga (Fl_n) dan graf trampolin $(T(K_n))$.

Definisi 1 (Vaidya & Shah, 2013)

Graf bunga adalah graf yang diperoleh dari graf helm dengan menghubungkan tiap-tiap simpul anting-anting ke simpul pusat dari graf helm. Graf bunga dinotasikan dengan Fl_n .

Febby Desy Lia, Nilamsari Kusumastuti, Fransiskus Fran – Bilangan Invers Dominasi

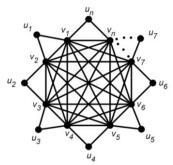


Gambar 1. Graf Fl_n

Berdasarkan Definisi 1, graf bunga (Fl_n) memiliki $V(Fl_n)=\{v_0,v_1,v_2,\ldots,v_n,u_1,u_2,\ldots,u_n\}$ dengan 2n+1 simpul dan memiliki $E(Fl_n)=\{i=1,2,3,\ldots,n\}\cup\{(v_1,v_n)\}\cup\{(v_i,v_{i+1})\mid i=1,2,3,\ldots,n\}$ $n-1\}$ dengan 4n sisi. Graf Fl_n diilustrasikan pada Gambar 1.

Definisi 2 (Scheinerman & Ullman, 1997)

Graf trampolin $(T(K_n))$ adalah graf yang diperoleh dari graf lengkap (K_n) , yang terdiri dari simpul-simpul $v_1, v_2, v_3, ..., v_n$, dengan menambahkan simpul u_i sedemikian sehingga u_i bertetangga dengan v_i dan v_{i+1} .



Gambar 2. Graf $T(K_n)$

Berdasarkan Definisi 2, graf trampolin $T(K_n)$ memiliki $V(T(K_n)) = \{v_1, v_2, v_3 \dots, v_n, u_1, u_2, u_3, \dots, u_n\}$ dengan 2n simpul dan memiliki $E(T(K_n)) = \{(v_i, v_j), (u_i, v_i) | i \neq j \text{ dan } i, j = 1, 2, 3, \dots, n\} \cup \{(u_i, v_{i+1}) | i = 1, 2, 3, \dots, n-1\} \cup \{(u_n, v_1)\}$ dengan $\frac{1}{2}n^2 + \frac{3}{2}n$ sisi. Graf $T(K_n)$ diilustrasikan pada Gambar 2.

2. Himpunan Invers Dominasi Total

Salah satu pengembangan dari himpunan dominasi adalah himpunan invers dominasi total. Sebelum menentukan himpunan invers dominasi total, terlebih dahulu diberikan beberapa definisi mengenai himpunan dominasi, himpunan dominasi total, himpunan invers dominasi dan himpunan invers dominasi total.

Definisi 3 (Sigarkanti, S.c.; Kulli, 1991)

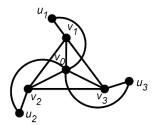
Himpunan dominasi pada suatu graf G, dinotasikan dengan D, adalah suatu himpunan bagian dari himpunan simpul V(G), dengan setiap simpul dari V(G) —

D bertetangga dengan minimum satu simpul di D. Kardinalitas minimum dari himpunan dominasi D adalah bilangan dominasi yang dinotasikan dengan $\gamma(G)$.

Berdasarkan Definisi 3, diketahui bahwa suatu simpul v_i dikatakan mendominasi simpul v_j ketika simpul v_i dan simpul v_j saling bertetangga. Jika simpul v_i mendominasi simpul v_j , maka simpul v_i disebut simpul dominator untuk simpul v_j . Berikut diberikan Contoh 1 untuk ilustrasi himpunan dominasi dari suatu graf.

Contoh 1

Diberikan Graf Fl_3 dengan himpunan simpul $V(Fl_3) = \{v_0, v_1, v_2, v_3, u_1, u_2, u_3\}$ dan himpunan sisi $E(Fl_3) = \{(v_0, v_1), (v_0, v_2), (v_0, v_3), (v_0, u_1), (v_0, u_2), (v_0, u_3), (v_1, v_2), (v_1, v_3), (v_1, u_1), (v_2, v_3), (v_2, u_2), (v_3, u_3)\}$. Graf Fl_3 dapat direpresentasikan pada Gambar 3.



Gambar 3. Graf Fl_3

Berdasarkan Gambar 3 dapat diketahui bahwa simpul v_0 mendominasi simpul v_1, v_2, v_3, u_1, u_2 dan u_3 ; simpul v_1 mendominasi simpul v_0, v_2, v_3 dan u_1 ; simpul v_2 mendominasi simpul v_0, v_1, v_3 dan u_2 ; simpul v_3 mendominasi simpul v_0, v_1, v_2 dan u_3 ; simpul u_1 mendominasi simpul v_0 dan v_1 ; simpul u_2 mendominasi simpul v_0 dan v_2 ; simpul u_3 mendominasi simpul v_0 dan v_3 . Sehingga, dapat ditentukan himpunan dominasi $D = \{v_0\}$. Didapat, setiap simpul dari $V(Fl_3) - D = \{v_1, v_2, v_3, u_1, u_2, u_3\}$ saling bertetangga dengan simpul di D. Dengan demikian, D merupakan himpunan dominasi pada graf Fl_3 dengan kardinalitas minimum, $\gamma(Fl_3) = 1$.

Definisi 4 (Kulli, 2015)

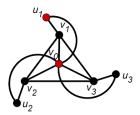
Himpunan $D_t \subseteq V(G)$ disebut himpunan dominasi total pada graf G, jika untuk setiap simpul pada V(G) bertetangga dengan minimum satu simpul di D_t . Bilangan dominasi total $\gamma_t(G)$ adalah kardinalitas minimum dari himpunan dominasi total pada graf G.

Contoh 2

Berdasarkan Gambar 3 serta Contoh 1, dapat ditentukan himpunan dominasi total pada graf Fl_3 . Diperoleh D_t dari graf Fl_3 yaitu $\{v_0, u_1\}$, karena setiap simpul V(G) bertetangga dengan salah satu simpul di D_t . Seperti, simpul v_0 bertetangga dengan

Febby Desy Lia, Nilamsari Kusumastuti, Fransiskus Fran – Bilangan Invers Dominasi

simpul u_1 ; simpul v_1 bertetangga dengan simpul v_0 dan u_1 dan simpul v_2 , v_3 , u_1 , u_2 dan u_3 bertetangga dengan simpul v_0 . Jadi, D_t merupakan himpunan dominasi total, dengan $\gamma_t(Fl_3)=2$. Ilustrasi lebih lanjut dapat dilihat pada Gambar 4, dengan dimisalkan simpul yang berwarna merah adalah dominasi total pada graf Fl_3 . Himpunan dominasi total selain $\{v_0, u_1\}$ diantaranya adalah $\{v_0, v_2\}$, $\{v_0, v_1, u_1\}$, dan $\{v_0, v_1, v_2, v_3\}$.



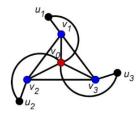
Gambar 4. Dominasi total pada graf Fl_3

Definisi 5 (Sigarkanti, S.c.; Kulli, 1991)

Dimisalkan suatu himpunan D adalah himpunan dominasi pada graf G dengan kardinalitas minimum. Jika V(G) - D memuat suatu himpunan dominasi lain, misal D^{-1} , maka D^{-1} disebut himpunan invers dominasi yang terkait dengan D. Kardinalitas minimum dari himpunan invers dominasi didefinisikan sebagai bilangan invers dominasi dari graf G yang dinotasikan dengan $\gamma^{-1}(G)$.

Contoh 3

Berdasarkan Gambar 3 serta Contoh 1, dapat ditentukan himpunan invers dominasi pada graf Fl_3 . Didapat $D=\{v_0\}$ pada graf Fl_3 dan bilangan dominasi $\gamma(Fl_3)=1$. Akibatnya, himpunan invers dominasi dengan kardinalitas minimum $D^{-1}=\{v_1,v_2,v_3\}$. Sehingga, bilangan invers dominasi $\gamma^{-1}(G)=3$. Ilustrasi lebih lanjut, dapat dilihat pada Gambar 5 dengan dimisalkan simpul yang berwarna merah adalah dominasi pada graf Fl_3 dan simpul berwarna biru adalah invers dominasi pada graf Fl_3 .



Gambar 5. Invers dominasi pada graf Fl_3

Definisi 6 (Kulli & Iyer, 2007)

Dimisalkan $D_t \subseteq V(G)$ merupakan himpunan dominasi total dengan kardinalitas minimum dari graf G. Jika $V(G) - D_t$ memuat himpunan dominasi total lain, misalnya D_t^{-1} , maka D_t^{-1} disebut himpunan invers dominasi total relatif terhadap

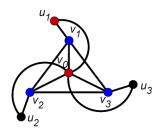
Febby Desy Lia, Nilamsari Kusumastuti, Fransiskus Fran – Bilangan Invers Dominasi

 D_t . Kardinalitas minimum dari himpunan invers dominasi total disebut bilangan invers dominasi total yang dinotasikan dengan $\gamma_t^{-1}(G)$

Berdasarkan Definisi 6, diketahui bahwa suatu graf memiliki himpunan invers dominasi total, jika memiliki himpunan dominasi total dengan kardinalitas minimum, D_t , dan subgraf yang dibangun oleh $V(G) - D_t$ tidak memuat simpul terasing.

Contoh 4

Berdasarkan Gambar 4 serta Contoh 2, dapat ditentukan himpunan invers dominasi total pada graf Fl_3 . Diketahui $D_t = \{v_0, u_1\}$ dan $V(Fl_3) - D_t = \{v_1, v_2, v_3, u_2, u_3\}$ yang memuat $D_t^{-1} = \{v_1, v_2, v_3\}$, maka D_t^{-1} merupakan himpunan invers dominasi total dari D_t pada graf Fl_3 . Diperoleh $\gamma_t^{-1}(Fl_3) = 3$, yang direpresentasikan pada Gambar 6, dengan simpul berwarna merah adalah dominasi total pada graf Fl_3 dan simpul berwarna biru adalah invers dominasi total pada graf Fl_3 .



Gambar 6. Invers dominasi total pada graf Fl_3

METODE PENELITIAN

Metode yang digunakan dalam penelitian ini adalah studi literatur. Setelah melakukan studi literatur, langkah yang dilakukan adalah membentuk pola bilangan invers dominasi total pada graf Fl_n dan graf $T(K_n)$ yang dijabarkan sebagai berikut:

- 1. Dimulai dari n = 3 sampai n = 9. Kemudian, dicari D_t dari graf Fl_n dan graf $T(K_n)$ dengan kardinalitas minimum pada n;
- 2. Diselidiki keberadaan D_t^{-1} pada $V(Fl_n) D_t$ dan $V(T(K_n)) D_t$. Jika $V(Fl_n) D_t$ dan $V(T(K_n)) D_t$ memuat D_t lain, maka graf Fl_n dan graf $T(K_n)$ memiliki D_t^{-1} . Jika $V(Fl_n) D_t$ dan $V(T(K_n)) D_t$ tidak memuat D_t lain, maka tidak dapat ditentukan bilangan invers dominasi totalnya;
- 3. Dicari D_t^{-1} dan membentuk pola γ_t^{-1} pada graf Fl_n dan graf $T(K_n)$;
- 4. Dilakukan pembuktian untuk pola γ_t^{-1} pada graf Fl_n dan graf $T(K_n)$ dengan $n \in N$. Setelah terbukti, maka diperoleh γ_t^{-1} dari graf Fl_n dan graf $T(K_n)$.

HASIL DAN PEMBAHASAN

1. Bilangan Invers Dominasi Total Pada Graf Bunga (Fl_n)

Bilangan invers dominasi total pada graf Fl_n dapat diperoleh dengan menggunakan langkah-langkah yang sudah dijelaskan pada metode penelitian.

Langkah pertama, menentukan himpunan invers dominasi total dari graf Fl_3 . Berdasarkan Gambar 6 serta Contoh 4, diperoleh $D_t^{-1} = \{v_1, v_2, v_3\}$ dengan $\gamma_t^{-1}(Fl_3) = 3$. Selanjutnya, dilakukan langkah yang sama untuk menentukan himpunan invers dominasi total pada graf $Fl_4, Fl_5, Fl_6, ..., Fl_n$, sehingga dapat terbentuk pola bilangan invers dominasi total untuk graf Fl_n . Dengan demikian, diperoleh Teorema 1.1.

Teorema 1.1

Jika Fl_n merupakan graf bunga dengan $n \ge 3$ dan $n \in \mathbb{N}$, maka $\gamma_t^{-1}(Fl_n) = n$. **Bukti.**

Diberikan graf bunga Fl_n dengan $V(Fl_n) = \{v_0, v_1, v_2, ..., v_n, u_1, u_2, ..., u_n\}$ dan $E(Fl_n) = \{(v_0, v_i), (v_0, u_i), (v_i, u_i) \mid i = 1, 2, 3, ..., n\} \cup \{(v_1, v_n)\} \cup \{(v_i, v_{i+1}) \mid i = 1, 2, 3, ..., n-1\}$. Diketahui dari Definisi 1, $|V(Fl_n)| = 2n+1$ dan v_0 bertetangga dengan setiap simpul lainnya di Fl_n . Akibatnya, untuk suatu i = 1, 2, 3, ..., n dan $\{v_0, u_i\}$ merupakan himpunan dominasi total dengan kardinalitas minimum. Tanpa mengurangi keumuman, dipilih i = 1. Didapat $D_t = \{v_0, u_1\}$ merupakan himpunan dominasi total dari Fl_n .

Akan ditunjukkan terdapat himpunan invers dominasi total (D_t^{-1}) yang relatif terhadap D_t . Akan dicari elemen-elemen pada D_t^{-1} sedemikian sehingga D_t^{-1} merupakan himpunan invers dominasi total relatif terhadap D_t . Jika D_t^{-1} merupakan himpunan invers dominasi total maka D_t^{-1} harus merupakan himpunan dominasi total. Jadi, D_t^{-1} harus memuat simpul yang bertetangga dengan v_0 dan u_1 . Didapat $v_1 \in D_t^{-1}$. Diketahui dari pola sisi pada Fl_3 , v_{i+1} dengan $i=1,2,3,\ldots,n-1$ hanya bertetangga dengan v_0 dan v_i . Sehingga, jika $v_1 \in D_t^{-1}$ maka haruslah $v_2 \in D_t^{-1}$, begitu juga jika $v_2 \in D_t^{-1}$ maka haruslah $v_3 \in D_t^{-1}$ dan seterusnya. Didapat $D_t^{-1} = \{v_1, v_2, v_3, \ldots, v_n\}$ dan $\left|D_t^{-1}\right| = n$.

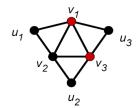
Selanjutnya, akan ditunjukkan bahwa jika D_t^{-1} himpunan invers dominasi total yang minimum dari Fl_n atau $\gamma_t^{-1}(Fl_n) = n$. Andaikan ada $D_{t_2}^{-1}$ yang lebih minimum dari D_t^{-1} . Hal ini berarti $\left|D_{t_2}^{-1}\right| \leq n-1$. Karena $\left|D_{t_2}^{-1}\right| \leq n-1$, terdapat minimum satu simpul u_i yang tidak bertetangga dengan simpul di $D_{t_2}^{-1}$. Jadi, tidak ada $D_{t_2}^{-1}$ yang lebih minimum dari D_t^{-1} . Dengan kata lain, $\gamma_t^{-1}(Fl_n) = n$.

2. Bilangan Invers Dominasi Total Pada Graf Trampolin $(T(K_n))$

Bilangan invers dominasi total pada graf $T(K_n)$ dapat diperoleh dengan menggunakan langkah-langkah yang telah dijelaskan pada metode penelitian. Langkah pertama, menentukan himpunan invers dominasi total pada graf $T(K_3)$. Pada graf $T(K_3)$ diperoleh himpunan dominasi total dengan kardinalitas minimum $D_t = \{v_1, v_3\}$ dan $V(T(K_3)) - D_t = \{v_2, u_1, u_2, u_3\}$ tidak memuat D_t lainnya yaitu D_t^{-1} , sehingga graf $T(K_3)$ tidak memiliki himpunan invers dominasi total. Graf $T(K_3)$ direpresentasikan pada Gambar 7 dengan simpul berwarna merah adalah

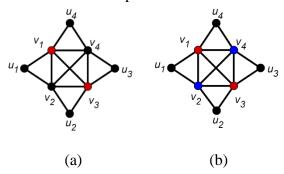
Febby Desy Lia, Nilamsari Kusumastuti, Fransiskus Fran – Bilangan Invers Dominasi

dominasi total pada graf $T(K_3)$.



Gambar 7. Dominasi total pada graf $T(K_3)$

Pada graf $T(K_4)$ diperoleh himpunan dominasi total dengan kardinalitas minimum yaitu $D_t = \{v_1, v_3\}$ dan $V(T(K_4)) - D_t = \{v_2, v_4, u_1, u_2, u_3, u_4\}$ yang memuat $D_t^{-1} = \{v_2, v_4\}$. D_t^{-1} merupakan himpunan invers dominasi total dari D_t pada graf $T(K_4)$. Diperoleh $\gamma_t^{-1}(T(K_4)) = 2$, yang direpresentasikan pada Gambar 8 dengan simpul berwarna merah merupakan dominasi total pada graf $T(K_4)$ dan simpul berwarna biru merupakan invers dominasi total pada graf $T(K_4)$.



Gambar 8. (a) Dominasi total pada graf $T(K_4)$ dan (b) Invers dominasi total pada graf $T(K_4)$

Dengan menggunakan langkah yang sama untuk menentukan himpunan invers dominasi total pada graf $T(K_5)$, $T(K_6)$, $T(K_7)$, ..., $T(K_n)$ diperoleh bahwa, jika n bernilai ganjil maka graf $T(K_n)$ tidak memiliki himpunan invers dominasi total. Sedangkan, jika n bernilai genap maka graf $T(K_n)$ memiliki himpunan invers dominasi total. Dengan demikian, himpunan invers dominasi total pada tiap-tiap graf $T(K_n)$ dapat terbentuk suatu pola γ_t^{-1} . Sehingga diperoleh Teorema 2.1 dan Teorema 2.2.

Teorema 2.1

Jika $T(K_n)$ merupakan graf trampolin dengan $n \geq 3$, n ganjil dan $n \in \mathbb{N}$, maka graf $T(K_n)$ tidak memiliki himpunan invers dominasi total.

Bukti.

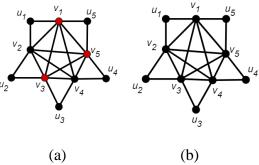
Diberikan graf trampolin $T(K_n)$ dengan $V(T(K_n)) = \{v_1, v_2, v_3, ..., v_n, u_1, u_2, ..., u_n\}$, n = 2k - 1, $k \in N$ dan $E(T(K_n)) = \{(v_i, v_j), (u_i, v_i) \mid i \neq j \text{ dan } i, j = 1,2,3, ..., n\} \cup \{(u_i, v_{i+1}) \mid i = 1,2,3, ..., n - 1\} \cup \{(u_n, v_1)\}$. Sehingga didapat $|V(T(K_n))| = 2n$. Berdasarkan Definisi 2, graf $T(K_n)$ dengan simpul $\{v_1, v_2, ..., v_n\}$ saling bertetangga satu sama lain. Akibatnya, $\{v_i \mid i = 1,3,5,...,n\}$

Febby Desy Lia, Nilamsari Kusumastuti, Fransiskus Fran – Bilangan Invers Dominasi

merupakan himpunan dominasi total dengan kardinalitas minimum dari $T(K_n)$.

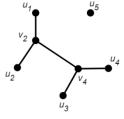
Akan ditunjukkan bahwa graf dengan himpunan simpul $V(T(K_n)) - D_t$ memiliki simpul terasing. Diketahui himpunan dominasi total minimum $D_t = \{v_1, v_3, v_5, ..., v_n\}$ dan $V(T(K_n)) - D_t = \{v_2, v_4, ..., v_{n-1}, u_1, u_2, ..., u_n\}$ tidak memiliki himpunan invers dominasi total, karena ada satu simpul terasing dari subgraf yang dibangun oleh $V(T(K_n)) - D_t$ yaitu u_n . Dengan kata lain graf $T(K_n)$ tidak memiliki himpunan invers dominasi total relatif terhadap D_t .

Berdasarkan Teorema 2.1, dapat diilustrasikan dengan diberikan graf $T(K_5)$ yang memiliki $V(T(K_5)) = \{v_1, v_2, v_3, v_4, v_5, u_1, u_2, u_3, u_4, u_5\}$ dan himpunan dominasi total dengan kardinalitas minimum, $D_t = \{v_1, v_3, v_5\}$, yang direpresentasikan pada Gambar 9 dengan simpul berwarna merah merupakan dominasi totalnya.



Gambar 9. (a) Graf $T(K_5)$ (b) Dominasi total pada graf $T(K_5)$

Selanjutnya dari Gambar 9, dicari himpunan invers dominasi totalnya, dengan $V(T(K_5)) - D_t = \{v_2, v_4, u_1, u_2, u_3, u_4, u_5\}$. Diperoleh bahwa untuk subgraf yang dibangun oleh $V(T(K_5)) - D_t$, yang direpresentasikan pada Gambar 10, memuat satu simpul terasing, yaitu simpul u_5 . Sehingga, dapat disimpulkan bahwa graf $T(K_5)$ tidak memiliki himpunan invers dominasi total, D_t^{-1} .



Gambar 10. Subgraf yang dibangun oleh $V(T(K_5)) - D_t$

Teorema 2.2

Jika $T(K_n)$ merupakan graf trampolin dengan $n \ge 4$, n genap dan $n \in \mathbb{N}$, maka $\gamma_t^{-1}(T(K_n)) = \frac{n}{2}$.

Bukti.

 $\{u_1,u_2,\ldots,u_n\}, n=2k,\ k\in N\ \mathrm{dan}\ E\big(T(K_n)\big)=\{\big(v_i,v_j\big),(u_i,v_i)|\ i\neq j\ \mathrm{dan}\ i=1,2,3,\ldots,n\}\cup\{(u_i,v_{i+1})|\ i,j=1,2,3,\ldots,n-1\}\cup\{(u_n,v_1)\}.$ Sehingga Didapat $\big|V\big(T(K_n)\big)\big|=2n.$ Berdasarkan Definisi 2, graf $T(K_n)$ dengan simpul $\{v_1,v_2,v_3,\ldots,v_n\}$ saling bertetangga satu sama lain. Akibatnya, untuk suatu $i=1,3,5,\ldots,n-1\ \mathrm{dan}\ \{v_i\}$ merupakan himpunan dominasi total dengan kardinalitas minimum dari $T(K_n)$. Tanpa mengurangi keumuman, diperoleh $D_t=\{v_1,v_3,v_5,\ldots,v_{n-1}\}$ merupakan himpunan dominasi total dari $T(K_n)$.

Akan ditunjukkan terdapat himpunan invers dominasi total $\left(D_t^{-1}\right)$ yang relatif terhadap D_t . Akan dicari elemen-elemen pada D_t^{-1} dari $V\left(T(K_n)\right) - D_t$ sedemikian sehingga D_t^{-1} merupakan himpunan invers dominasi total relatif terhadap D_t . Jika D_t^{-1} merupakan himpunan invers dominasi total maka D_t^{-1} harus merupakan himpunan dominasi total. Diketahui dari pola sisi pada $T(K_n)$, simpul v_1 bertetangga dengan v_j untuk semua j, u_1 dan u_n . Untuk $i \neq j$, simpul v_i bertetangga dengan v_j untuk semua j, u_i dan u_{i-1} . Dimisalkan $v_2 \in D_t^{-1}$ maka v_2 mendominasi v_j , u_1 dan u_2 . Jika $v_3 \in D_t^{-1}$ maka $v_3 \notin D_t^{-1}$, sedangkan v_3 mendominasi v_j , u_2 dan u_3 . Jadi, dicari simpul yang mendominasi u_3 yaitu u_4 , diperoleh $v_4 \in D_t^{-1}$. Dengan argumen yang sama v_k , untuk v_1 ganjil maka $v_2 \notin D_t^{-1}$, karena $v_2 \in D_t^{-1}$. Sehingga agar simpul $v_2 \in D_t^{-1}$. Didapat, $v_3 \in D_t^{-1}$ bata haruslah $v_4 \in D_t^{-1}$. Didapat, $v_4 \in D_t^{-1}$. Didapat, $v_4 \in D_t^{-1}$. Didapat, $v_4 \in D_t^{-1}$ bata haruslah $v_4 \in D_t^{-1}$. Didapat, $v_4 \in D_t^{-1}$. Didapat, $v_4 \in D_t^{-1}$ bata haruslah $v_4 \in D_t^{-1}$. Didapat, $v_4 \in D_t^{-1}$ bata haruslah $v_4 \in D_t^{-1}$. Didapat, $v_4 \in D_t^{-1}$ bata haruslah $v_4 \in D_t^{-1}$. Didapat, $v_4 \in D_t^{-1}$ bata haruslah $v_4 \in D_t^{-1}$. Didapat, $v_4 \in D_t^{-1}$ bata haruslah $v_4 \in D_t^{-1}$. Didapat, $v_4 \in D_t^{-1}$ bata haruslah $v_4 \in D_t^{-1}$ bata haruslah $v_4 \in D_t^{-1}$ bata haruslah haru

Selanjutnya, akan ditunjukkan bahwa jika D_t^{-1} himpunan invers dominasi total yang minimum dari $T(K_n)$ atau $\gamma_t^{-1}\big(T(K_n)\big)=\frac{n}{2}$. Andaikan ada $D_{t_2}^{-1}$ yang lebih minimum dari D_t^{-1} . Hal ini berarti $\left|D_{t_2}^{-1}\right| \leq \frac{n}{2} - 1$. Karena $\left|D_{t_2}^{-1}\right| \leq \frac{n}{2} - 1$, terdapat minimum satu simpul u_i yang tidak bertetangga dengan simpul di $D_{t_2}^{-1}$. Jadi, tidak ada $D_{t_2}^{-1}$ yang lebih minimum dari D_t^{-1} . Dengan kata lain $\gamma_t^{-1}(Fl_n) = \frac{n}{2}$.

KESIMPULAN

Berdasarkan pembahasan yang telah dibahas oleh peneliti, maka diperoleh bilangan invers dominasi total pada graf bunga $\gamma_t^{-1}(Fl_n) = n$, untuk $n \geq 3$ dan $n \in \mathbb{N}$. Kemudian, pada graf trampolin $T(K_n)$ untuk $n \geq 3$ dan $n \in \mathbb{N}$ diperoleh graf $T(K_n)$ tidak memiliki himpunan invers dominasi total jika n ganjil, sedangkan jika n genap diperoleh $\gamma_t^{-1}(T(K_n)) = \frac{n}{2}$.

REFERENSI

Chartrand, G., Lesniak, L., & Zhang, P. (2016). *Graphs & Digraphs, Sixth Edition*. https://books.google.com/books?hl=nl&lr=&id=K6-FvXRlKsQC&pgis=1 Febrianti, A. F., Kiftiah, M., & F.Fran. (2019). Bilangan Dominasi Invers pada Graf

Febby Desy Lia, Nilamsari Kusumastuti, Fransiskus Fran – Bilangan Invers Dominasi

- Ular Segitiga, Ular Segitiga Ganda, Ular Segiempat, Ular Segiempat Ganda dan Graf Pembangunnya. *Bimaster: Buletin Ilmiah Matematika, Statistika Dan Terapannya*, 08(4), 917–926.
- Gallian, J. A. (2007). A dynamic survey of graph labeling. *Electronic Journal of Combinatorics*, *I*(DynamicSurveys), 1–180.
- Kaleeswari, C., & Sathya, K. (2020). Inverse Domination And Inverse Total Domination In Digraph. *International Journal of Mathematics Trends and Technology*, 66(3), 12–17. https://doi.org/10.14445/22315373/ijmtt-v66i3p503
- Kauser, S. A., Khan, A., & Parvathi, M. S. (2020). Inverse Domination and Inverse Total Domination for an Undirected Graph. *International Journal of Mathematics Trends and Technology* (*IJMTT*), 66(3), 65–74. https://doi.org/10.17654/dm023020065
- Kulli, V. R. (2015). The total dominating graph. *Annals of Pure and Applied Mathematics*, 10(1), 123–128.
- Kulli, V. R. (2016a). Graphs with Equal Total Domination and Inverse Total Domination Numbers. *Journal of Mathematics And Its Applications*, 04(1-B), 175–179. https://doi.org/10.1080/02522667.2017.1379233
- Kulli, V. R. (2016b). Inverse Total Domination in the Corona and Join of Graphs. *Journal of Computer and Mathematical Sciences*, 7(2), 61–64.
- Kulli, V. R. & Iyer, R. R. (2007). Inverse total domination in graphs. *Journal of Discrete Mathematical Sciences and Cryptography*, 10(5), 613–620. https://doi.org/10.1080/09720529.2007.10698143
- Munir, R. (2010). Matematika Diskrit. *Informatika Bandung*, 281–308.
- Muthuraj, R. & Revathi, S. (2021). Inverse domination on multi fuzzy graph. *Journal of Mathematical and Computational Science*, 11(5), 5252–5266. https://doi.org/10.28919/jmcs/5943
- Scheinerman, E. R. & Ullman, D. H. (1997). Fractional Graph Theory A Rational Approach to the Theory of Graphs. *Notes*, 211. https://books.google.co.uk/books?hl=en&lr=&id=zzFxD8kPWigC&oi=fnd&pg=PP1&dq=graph+theory+cycle+gamma+index&ots=yUk8oRpRra&sig=TfioIxIdcskszl7GP05u9fu3IyA#v=onepage&q&f=false%0Ahttp://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Fractional+Graph+
- Kulli V.R & Sigarkanti, S.C. (1991). Inverse Domination in Graphs. *Nat. Acad. Sci. Lett*, *14*(*12*), 473–475.
- Vaidya, S. K., & Shah, N. H. (2013). Prime cordial labeling of some wheel related graphs. *Malaya Journal of Matematik*, 4(1), 148–156.