STUDI IN SILICO INTERAKSI KOBALT DAN MERKURI TERHADAP PROTEIN PADA KEJADIAN DIABETES MELITUS
Abstract
The coal mining industry in South Kalimantan can cause heavy metal waste pollution in the aquatic environment if not managed wisely. Cobalt and mercury are heavy metals that can cause disruption of glucose homeostasis which can lead to diabetes mellitus. The toxicity of cobalt and mercury occurs as a result of interactions with proteins associated with diabetes mellitus, namely insulin receptors, PPARγ, protein kinase b and c-reactive protein. This study aims to determine the interaction of heavy metals cobalt and mercury on insulin receptors, PPARγ, protein kinase b and c-reactive protein with PDB ID: 2HR7, 1PRG, 3E87, 1GNH taken from the Protein Data Bank and using the molecular docking website MIB2: Metal Ion-Binding site prediction and modeling server. Docking results were visualized using the Chimera ver 1.16 application. Based on the docking results, it was found that the interaction between cobalt and mercury with insulin receptors, PPARγ, protein kinase b and c-reactive protein. Cobalt has the highest potential to bind to insulin receptors. While mercury has the highest potential to bind to protein kinase b. Mercury binds more strongly to insulin receptors, PPARγ, protein kinase b and c-reactive protein than cobalt. This interaction causes changes in protein conformation that have the potential to inactivate protein function.
Keywords
Full Text:
PDFReferences
Schwinghammer TL. Endocrinologic disorders. In: Wells BG, DiPiro JT, Schwinghammer TL, DiPiro CV, editors. Pharmacotherapy handbook. 9th ed. New York: McGraw-Hills; 2015. p. 161
Iskandar, Budianto WY, Suhartono E. Effect of cadmium exposure on increasing risk of diabetes melitus through the measurement of blood glucose level and liver glucokinase activity in rats. Berkala Kedokteran. 2017;13(2):137-45.
Singh A, Kukreti R, Saso L, Kukreti S. Mechanistic insight into oxidative stress-triggered signaling pathways and type 2 diabetes. Molecules. 2022:27(3):1-20.
Morais S, Costa FG, Pereira ML. Heavy metals and human health. In: Oosthuizen J, editors. Environmental health emerging issues and practice. London: IntechOpen; 2012. p. 228
Arroyo VS, Flores KM, Ortiz LB, Gómez-Quiroz LE, Gutiérrez-Ruiz MC. Liver and cadmium toxicity. J Drug Metab Toxicol. 2012;S5 suppl 001;1-7.
Kementerian Kesehatan RI. Tetap produktif, cegah dan atasi diabetes melitus. Pusat Data dan Informasi Kementerian Kesehatan RI. 2020. p. 1-6.
Tinkov AA, Filippini T, Ajsuvakova OP, Aaseth J, Gluhcheva YG, Ivanova JM, et al. The role of cadmium in obesity and diabetes. Sci. Total Environ. 2017;601:741–55.
Little BB, Reilly R, Walsh B, Vu GT. Cadmium is associated with type 2 diabetes in a superfund site lead smelter community in Dallas, Texas. Int. J. Environ. Res. Public Health. 2020;17:1-13.
Su TY, Jeng HA, Hsu YT, Lai CH, Pan CH. Impact of heavy metals in ambient air on insulin resistance of shipyard welders in Northern Taiwan. Sustainability. 2021;13:1-14.
Ramirez-Bajo MJ, Atauri P, Ortega F, Westerhoff HV, Gelpi JL, Centelles JJ, Cascante M. Effects of cadmium and mercury on the upper part of skeletal muscle glycolysis in mice. Plos One. 2014;9(1):1-7.
Suhartono E, Komari N, Siahaan SCPT. Interaksi merkuri dan kadmium terhadap enzim kunci pada glikolisis in siliko. Jurnal Ilmiah Kedokteran Wijaya Kusuma. 2021;10(2):253-60.
Damian-Medina K, Salinas-Moreno Y, Milenkovic D, Figueroa-Yanez L, Marino-Marmolejo E, Higuera-Ciapara I, et al. In silico analysis of antidiabetic potential of phenolic compounds from blue corn (Zea mays L.) and black bean (Phaseolus vulgaris L.). Heliyon. 2020;6:1-13.
Behar A, Dennouni-Medjati N, Harek Y, Dali-Sahi M, Belhadj M, Meziane FZ. Selenium overexposure induces insulin resistance: In silico study. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2020;14(6):1651-7
Croll TI, Smith BJ, Margetts MB, Whittaker J, Weiss MA, Ward CW, et al. Higher resolution structure of the human insulin receptor ectodomain: multi-modal inclusion of the insert domain. HHS Public Access. 2016;24(3):469–76.
Kvandovai M, Majzunova M, Dovinova I. The role of pparγ in cardiovascular diseases. Physiological Research. 2016;65:343-63.
Tain YL, Hsu CN, Chan JYH. PPARs link early life nutritional insults to later programmed hypertension and metabolic syndrome. Int J Mol Sc. 2016;17(1):1-11.
Kiss M, Czimmerer Z, Nagy L. The role of lipid-activated nuclear receptors in shaping macrophage and dendritic cell function: From physiology to pathology. J Allergy Clin Immunol. 2013;132(2):264-86.
Montanez JE, Peters JM, Correll JB, Gonzales FJ, Patterson AD. Metabolomics: an essential tool to understand the function of peroxisome proliferator-activated receptor alpha. Toxicol Pathol. 2013;41(2):410-18.
Manning BD, Toker A. Akt/pkb signaling: navigating the network. Cell, 2017;169(3):381-405.
Khorami SAH, Movahedi A, Huzwah K, Sokhini AMM. PI3K/AKT pathway in modulating glucose homeostasis and its alteration in Diabetes. Annals of Medical and Biomedical Sciences. 2015;1(2):46-55.
Tanigaki K, Vongpatanasin W, Barrera JA, Atochin DN, Huang PL, Bonvini E, et.al. C-Reactive Protein Causes Insulin Resistance in Mice Through Fcg Receptor IIB–Mediated Inhibition of Skeletal Muscle Glucose Delivery. Diabetes. 2013; 62: 721-31.
Nasdian FT, Pandjaitan NK, Barlan ZA. Resiliensi komunitas kawasan pertambangan dan kerawanan pangan di Kalimantan Selatan. Jurnal Sosiologi Pedesaan. 2020;08(01):47-63.
Sudarningsih. Analisis logam berat pada sedimen sungai Martapura, Kalimantan Selatan. Jurnal Fisika Flux: Jurnal Ilmiah Fisika FMIPA Universitas Lambung Mangkurat. 2021;18(1);1-7.
Hejabi AT, Basavarajappa HT. Heavy metals partitioning in sediments of the Kabini River in South India. Environmental Monitoring and Assessment. 2013;185(2):1273-83.
Kalender L, Cicek US. Assessment of metal contamination in sediments in the tributaries of the Euphrates River, using pollution indices and the determination of the pollution source, Turkey. Journal of Geochemical Exploration. 2013;134:73-84.
Kang M, Wu S, Zhang L, Yang Y, Liu J, Chen F. Comprehensive assessment of heavy metal contamination in sediment of the Pearl River Estuary and adjacent shelf. Marine Pollution Bulletin. 2012;64(9):1947-55.
Salloum Z, Lehoux EA, Harper ME, Catelas I. Effects of cobalt and chromium ions on oxidative stress and energy metabolism in macrophages in vitro. J. Orthop. Res. 2018;3178-87.
Chen KL, Liu SH, Su CC, Yen CC, Yang CY, Lee KI, Tang FC, Chen YW, Lu TH, Su YC, Huang CF. Mercuric compounds induce pancreatic islets dysfunction and apoptosis in vivo. Int J Mol Sci. 2012;13(10):12349-66.
Wetipo YS, Mangimbulude JC, Rondonuwu FS. Produksi ros akibat akumulasi ion logam berat dan mekanisme penangkal dengan antioksidan. Proceeding Biology Education Conference. 2013;10(1):1-7.
Engwa GA, Ferdinand PU, Nwalo FN. Unachukwu M. Mechanism and health effects of heavy metal toxicity in humans. Intech Open. 2019;7(6):1-25.
Sabir S, Akasha MSH, Fiayyaza F, Saleemb U, Mehmoodb MH, Rehman K. Role of cadmium and arsenic as endocrine disruptors in the metabolism of carbohydrates: inserting the association into perspectives. Biomedicine & Pharmacotherapy. 2019;114:1-10.
Pratidina EA, Suhartono E, Setiawan B. Impact of heavy metals on hexokinase isoforms: an in silico study. Berkala Kedokteran. 2022;18(2):2022 29-35.
Laychock SG. Insulin receptor signaling. In: Henry HL, Norman AW, editors. Encyclopedia of hormones. USA: Academic Press, 2003; p. 371.
Lee MA, Tan L, Yang H, Im YG, Im YJ. Structures of PPARγ complexed with lobeglitazone and pioglitazone reveal key determinants for the recognition of antidiabetic drugs. Scientific Reports. 2017; 7(16837):1-11.
McKenna MS, Balasuriya N, Zhong S, Li SSC, O’Donoghue P. Phospho-form specific substrates of protein kinase b (AKT1). Frontiers. 2021;8:1-16.
Pathak A, Agrawal A. Evolution of C-Reactive Protein. Frontiers. 2019;10:1-12.
Ynalvez R, Gutierrez J, Gonzalez-Cantu H. Mini-review: toxicity of mercury as a consequence of enzyme alteration. BioMetals. 2016;29(5):781-8.
Malau ND, Azzahra SF. Analysis docking od Plasmodium falciparum enoyl acyl carrier protein reductase (pfenr) with organic compunds from virtual screening of herbal database. Acta Chim Asiana. 2020;3(1):127-34.
Thorens B, Mueckler M. Glucose transporters in the 21st century. Am. J. Physiol. Endocrinol. 2010;298(2):141-5.
Zheng T, Liu S, Bai Y, Cheng N, Buka S, Yang A, et.al. Current understanding of the relationship between metal exposures and risk of type 2 diabetes. Current Research in Diabetes & Obesity Journal. 2018;7(2):1-9
Sukarno DA. Pengaruh latihan fisik terhadap perbaikan resistensi insulin. KELUWIH: Jurnal Kesehatan dan Kedokteran. 2021;2(2):108-12.
Khan AR and Awan FR (2014). Metals in the pathogenesis of type 2 diabetes. J Diabetes Metab Disord. 2014;13(16):1-6.
Javaid A, Akbar I, Javed H, Khan U, Iftikhar H, Zahra D, et.al. Role of heavy metals in diabetes: mechanisms and treatment strategies. Critical Reviews in Eukaryotic Gene Expression. 2021;31(3):65-80.
DOI: https://doi.org/10.20527/ht.v6i3.11473
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Homeostasis
Homeostasis is licensed under a Creative Commons Attribution 4.0 International License
Program Studi Kedokteran Program Sarjana
Fakultas Kedokteran Universitas Lambung Mangkurat
Jalan Veteran No.128 Banjarmasin
Phone: +62-878-1546-0096
email : [email protected]