DAMPAK LOGAM BERAT KOBALT DAN MERKURI TERHADAP PROTEIN PADA KEJADIAN DIABETES MELITUS: KAJIAN IN SILICO

Nabila Rahman, Eko Suhartono, Fujiati Fujiati, Mashuri Mashuri, Bambang Setiawan

Abstract


Diabetes melitus merupakan penyakit kompleks dengan keadaan dimana kadar glukosa plasma di atas normal. Penyakit ini dimanifestasikan pada jalur seluler yang berbeda-beda yaitu sekresi insulin, resistensi insulin, dan penyerapan karbohidrat. Kobalt dan merkuri merupakan logam yang berpotensi memiliki peran dalam kejadian diabetes melitus. Disebutkan bahwa logam berat meningkatkan gangguan dari pembentukan sel di pulau-pulau. Langerhans yang pada akhirnya terjadi resistensi insulin. Namun, untuk mekanismenya masih belum diketahui. Terdapat beberapa molekul protein yang keberadaannya berpengaruh besar pada kejadian diabetes melitus antara lain adenosine monophosphate protein kinase (AMPK), glutamine fructose-6-phosphate amidotransferase (GFAT), protein tyrosine phosphatases (PTP) dan tyrosine kinase insulin receptor. Afinitas pengikatan ion logam berat dengan AMPK terjadi pada sisi alosterik Cystein B sintase (CBS) menjadi domain tempat terikatnya residu asam amino hasil interaksi. Enzim GFAT dengan ion logam berat terjadi pada binding site dari GFAT terletak pada domain N-terminal. Interaksi antara PTP dengan ion logam pada active site yang terletak di dekat domain N-terminal yang berikatan yang menunjukkan sistein sebagai anion thiolate dan akan terinaktivasi apabila mengalami oksidasi. Tyrosine kinase insulin receptor dengan ion logam berat terjadi pada active site yang terletak di dekat domain C-terminal yang berikatan yang menunjukkan tyrosine yang bergerak menuju lingkaran aktivasi IRK.

 


Keywords


diabetes melitus, logam berat, protein, penambatan molekuler

Full Text:

PDF

References


Hendryx M, Luo J, Chojenta C, Byles JE. Exposure to heavy metals from point pollution sources and risk of incident type II diabetes among women: a prospective cohort analysis. International Journal of Environmental Health Research. 2021;31(4):453-464.

Mellendick K, Shanahan L, Wideman L, Calkins S, Keane S, Lovelady C. Diets rich in fruits and vegetables are associated with lower cardiovascular disease risk in adolescents. Nutrients. 2018;10(2):1-15.

Mildawati M, Diani N, Wahid A. Hubungan usia, jenis kelamin dan lama menderita diabetes dengan kejadian neuropati perifer diabetik. Caring Nursing Journal. 2019;3(2):30-37.

Krämer U, Herder C, Sugiri D, Strassburger K, Schikowski T, Ranft U, et al. Traffic-related air pollution and incident type II diabetes: results from the SALIA cohort study. Environment Health Perspective. 2010;118(9):1273-1279.

Chiu HF, Chang CC, Tsai SS, Yang CY. Does arsenic exposure increase the risk for diabetes melitus. Journal Occupation Environment Medical. 2006;48(3):63-67.

Becker A, Axelrad D. Arsenic and type II diabetes: commentary on association of inorganic arsenic exposure with type II diabetes melitus: a meta-analysis by Wang et al. Journal Epidemiology Community Health. 2014;68(5):393-395.

Choudri BS, Charabi Y. Health effects associated with wastewater treatment, reuse, and disposal. Water Environment Research. 2019;91(10):976-983.

International Diabetes Federation (IDF). IDF diabetes atlas eighth edition 2017. Atlas of Diabetes Melitus IDF. 2017;20-23.

Salsabila AE. Analisis potensi antidiabetik senyawa palmitic acid melalui aktivasi AMPK secara in silico. Doctoral Dissertation Universitas Islam Negeri Maulana Malik Ibrahim. 2022;50-60.

Nisa C, Irawati U, Sunardi S. Model adsorpsi timbal (Pb) dan seng (Zn) dalam sistem air-sedimen di Waduk Riam Kanan Kalimantan Selatan. Konversi. 2013;2(1):7-14.

Ningsih UP. Studi in silico senyawa arecoline (areca cathecu l.) sebagai kandidat obat antidepresan. Jurnal Universitas Riau. 2021;3:1-12

Natarajan A, Sugumar S, Bitragunta S, Balasubramanyan N. Molecular docking studies of (4Z, 12Z)-cyclopentadeca-4, 12-dienone from Grewia hirsuta with some targets related to type 2 diabetes. BMC Complementary and Alternative Medicine 2012;15(1):1-8.

Pratidina EA, Suhartono E, Setiawan B. Impact of heavy metals on hexokinase isoforms: an in silico study. Jurnal Berkala Kedokteran. 2021;18(1):29-35.

Kemp BE, Stapleton D, Campbell DJ, Chen ZP, Murthy S, Walter M, et al. AMP-activated protein kinase, super metabolic regulator. Biochemical Society Transactions. 2003;31(1):162-168.

Richez C, Boetzel J, Floquet N, Koteshwa K, Stevens J, Badet B, et al. Expression and purifi cation of active human internal his(6)-tagged l-glutamine: d-fructose-6p amidotransferase. Protein Expr Purif. 2007;54:45-53

Ruegenberg S, Horn M, Pichlo C, Allmeroth K, Baumann U, Denzel MS. (2020) Loss of GFAT-1 feedback regulation activates the hexosamine pathway that modulates protein homeostasis. Nat Commun. 2020;11:1-16

Du D, Edelstein L, Rossetti IG, Fantus H, Goldberg F, Ziyadeh J, et al. Hyperglycemia induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc Natl Acad Sci. 2000;97:12222–12226.

Martz E. Protein Explorer: easy yet powerful macromolecular visualization. Trends in Biochemical Sciences. 2002;27(2):107-109.

Malau ND, Azzahra SF. Analysis docking of plasmodium falciparum enoyl acyl carrier protein reductase (pfenr) with organic compunds from virtual screening of herbal database. Journal of Applied Chemical Science. 2018;5(2):491-496.

Kongot M, Reddy DS, Singh V, Patel R, Singhal NK, Kumar A. ONS donor entwined iron (III) and cobalt (III) complexes with exemplary safety profile as potent anticancer and glucose uptake agents. New Journal of Chemistry. 2019;43(27):10932-10947.

Elchebly M, Payette P, Michaliszyn E, Cromlish W, Collins S, Loy AL, et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science. 2009;283:1544-1548.

Monteiro LF, Ferruzo PYM, Russo LC, Farias JO, Forti FL. DUSP3/VHR: a druggable dual phosphatase for human diseases. Rev Physiol Biochem Pharmacol. 2019;176:1-35.

Saltiel AR, Pessin JE. Insulin signaling pathways in time and space. Trends Cell Biol. 2002;12:65–71.

Hubbard SR. Structure and mechanism of the insulin receptor tyrosine kinase. Academic Press. 2017. p. 307-313.

Kern NM, Lawrence MC, Streltsov VA, Lou MZ, Adams TE, Lovrecz GO, et al. Structure of the insulin receptor ectodomain reveals a folded-over conformation. Nature. 2006;443:218-21.

Hubbard SR, Till JH. Protein tyrosine kinase structure and function. Annu Rev Biochem. 2000;69:373-98.




DOI: https://doi.org/10.20527/ht.v6i2.9995

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Homeostasis

Creative Commons License
Homeostasis is licensed under a Creative Commons Attribution 4.0 International License

Program Studi Kedokteran Program Sarjana
Fakultas Kedokteran Universitas Lambung Mangkurat
Jalan Veteran No.128 Banjarmasin
Phone: +62-878-1546-0096
email : [email protected]