PENGARUH PENAMBAHAN AIR SCOOP DAN PEMBERIAN VARIASI BAHAN BRAKE PAD TERHADAP PENURUNAN PANAS PADA SISTEM REM

David Maulana Maksum, Nike Nur Farida

Abstract


Air scoop merupakan komponen untuk mengalirkan udara ke bagian kaliper. Metode yang digunakan dalam penelitian ini yaitu dengan menambahkan kompenen air scoop dan melakukan penggantian bahan brake pad yaitu carbon. Pengujian dilakukan dengan memanaskan sistem rem dengan cara kendaraan melaju sambil direm sejauh 500 meter (mencari suhu tertinggi) selanjutnya melajukan kendaraan dengan kecepatan 60 km/jam sejauh 700 meter dan direm dengan menggunakan rem belakang sampai kendaraan berhenti (suhu setelah pendinginan). Hasil penelitian dari 4 pengujian adalah sebagai berikut: pengujian rem standart (tanpa air scoop dan menggunakan brake pad standart memiliki suhu tertinggi 116,2˚C dan suhu seletah pendinginan 102,8˚C. Pengujian tanpa air scoop menggunakan brake pad carbon memiliki suhu tertinggi 111,9˚C dan suhu setelah pendinginan 92,8˚C. Pengujian dengan air scoop dengan brake pad standart memiliki suhu tertunggi 117,9˚C dan suhu setelah pendinginan 100,5˚C. Pengujian air scoop dengan brake pad carbon memiliki suhu tertinggi 117,6˚C dan suhu setelah pendinginan 85,8˚C. sehinngga dapat disimpulkan bahwa penambahan air scoop dan menggunakan brake pad carbon memiliki nilai pendinginan yang paling baik pada sistem rem.

 

The air scoop is a component to channel air to the caliper. The method used in this research is by adding an air scoop component and replacing the brake pad material, namely carbon. The test is carried out by heating the brake system by driving the vehicle while braking for 500 meters (looking for the highest temperature) then driving the vehicle at a speed of 60 km/hour for 700 meters and braking using the rear brake until the vehicle stops (temperature after cooling). The research results from 4 tests are as follows: standard brake testing (without air scoop and using a standard brake pad has the highest temperature of 116.2˚C and after cooling temperature is 102.8˚C. Testing without air scoop using a carbon brake pad has the highest temperature of 111.9˚C and the temperature after cooling was 92.8˚C. The air scoop test with a standard brake pad had the highest temperature of 117.9˚C and the temperature after cooling was 100.5˚C. So it can be concluded that adding an air scoop and using a carbon brake pad has the best cooling value in the brake system.


Keywords


Air Scoop; Brake Pad Carbon; Pelepasan Panas; Sistem Rem

Full Text:

PDF

References


Adi Cifriadi, Sugita, P., Kemala, T., & Nikmatin, S. (2023). Kajian Penggunaan Carbon Black N990 sebagai Bahan Pengisi Kompon Karet Alam: Sifat Dinamik, Kestabilan Termal, dan Ketahanan Panas. Jurnal Riset Kimia, 14(1), 25–34. https://doi.org/10.25077/jrk.v14i1.560

Aletras, A. (2024). Computational Aerodynamics Study on the Cooling Effectiveness of Active Brake Ducts for Racing Brake Discs.

Anggaputra, J., & Hernowo, S. (2022). Pengaruh Ukuran Diffuser Terhadap Laju Aliran Di Dalam Ruang Uji Terowongan Angin. Jurnal Voering, 7(1), 9–15.

Battaje, R. R., & Panda, D. (2017). Lessons from bacterial homolog of tubulin, FtsZ for microtubule dynamics. Endocrine-Related Cancer, 24(9), T1–T21. https://doi.org/10.1530/ERC-17-0118

Day, A. J., & Bryant, D. (2022). Braking of road vehicles.

Feng, W., Qin, M., & Feng, Y. (2016). Toward highly thermally conductive all-carbon composites: Structure control. Carbon, 109, 575–597. https://doi.org/10.1016/j.carbon.2016.08.059.

Guzzella, L., & Sciarretta, A. (2013). Vehicle Propulsion Systems: Introduction to Modeling and Optimization (3rd ed.). Springer.

Hidayat, T. (2015). Gambar 1 . Sirkulasi sistem Air scoop Radiator Gambar 2 . Radiator yang dilengkapi dengan air scoop. 1.

Kashyap, P. K., Arya, D., Gupta, K., Kumar, K., & Khan, M. S. (2019). “Design and analysis of single piston floating brake caliper". ” Int. J. Eng. Res. Technol, 8, 910-916.

Khafidh, M., Putera, F. P., Yotenka, R., Fitriyana, D. F., Widodo, R. D., Ismail, R., Irawan, A. P., Cionita, T., Siregar, J. P., & Ismail, N. H. (2023). A Study on Characteristics of Brake Pad Composite Materials by Varying the Composition of Epoxy, Rice Husk, Al2O3 and Fe2O3. Automotive Experiences, 6(2), 303–319. https://doi.org/10.31603/ae.9121

Khatami, M., Muslim, Z. A., & Kurniawan, Y. J. (2023). Design of brake failure control on motorcycle disc brakes through an integrated cooling system. Journal of Engineering and Applied Technology, 4(2), 106–114. https://doi.org/10.21831/jeatech.v4i2.65235

Kumar, T. S., & Ashok, B. (2021). “Critical review on combustion phenomena of low carbon alcohols in SI engine with its challenges and future directions". Renewable and Sustainable Energy Reviews, 152, 111702.

Limpert, R. (1999). Brake Design and Safety (2nd ed.). Society of Automotive Engineers, Inc.

Maulana, A., & Prasetyo, I. (2021). Pengaruh Pemilihan Kampas Rem Pada Roda Depan Honda Sonic 150R. Surya Teknika, 5(2), 48–53. https://doi.org/10.48144/suryateknika.v5i2.1336

Mekanikal, J. K. (2022). Politeknik Sultan Salahuddin Abdul Aziz Shah Brake Cooling Air Duct ( BCAD ).

Onyeaju, M. C., Osarolube, E., Chukwuocha, E. O., Ekuma, C. E., & Omasheye, G. A. J. (2012). Comparison of the Thermal Properties of Asbestos and Polyvinylchloride (PVC) Ceiling Sheets. Materials Sciences and Applications, 03(04), 240–244. https://doi.org/10.4236/msa.2012.34035

Orłowicz, A. W., Mróz, M., Wnuk, G., Markowska, O., Homik, W., & Kolbusz, B. (2016). Coefficient of Friction of a Brake Disc-Brake Pad Friction Couple. Archives of Foundry Engineering, 16(4), 196–200. https://doi.org/10.1515/afe-2016-0109

Park, S., Lee, K., Kim, S., & Kim, J. (2022). Brake-Disc Holes and Slit Shape Design to Improve Heat Dissipation Performance and Structural Stability. Applied Sciences (Switzerland), 12(3). https://doi.org/10.3390/app12031171.

Reimpell, J., Stoll, H., & Betzler, J. (2001). The Automotive Chassis: Engineering Principles (2nd ed.). Butterworth-Heinemann.

Sudarma, A. F., Islahuddin, I., & Firmansyah, N. (2021). Analisis Kinerja Sistem Pendinginan Mesin Dengan Udara Langsung Menggunakan CFD Pada Mobil Konsep Hemat Energi. Rotasi, 23(3), 31–37. https://ejournal.undip.ac.id/index.php/rotasi/article/view/36992

Suleiman, S. A. (2017). Thermal Properties of Some Selected Materials Used as Ceiling in Building. 1, 1–55. https://doi.org/10.61298/pnspsc.2024.1.109

Syawaludin, I. A. S. (2018). Perbandingan Pengujian Mekanis Terhadap Kampas Rem Asbes dan Non Asbestos dengan Melakukan uji Komposisi, Uji Kekerasan dan Uji Keausan. Jurnal Universitas Muhammadiyah Jakarta, Jurusan Teknik Mesin, 1–10.

Tripariyanto, A. Y., Dewi, L., & Komari, A. (2021). Nilai Perlambatan Dan Uji Ketegangan Disch Brake Pada Sistem Pengereman (Gokart 7,5 Hp). Prosiding Seminar Nasional Teknik Industri, 1, 79–92. https://doi.org/10.33479/snti.v1i.154




DOI: https://doi.org/10.20527/jtam_rotary.v6i2.13184

Refbacks

  • There are currently no refbacks.


JTAM ROTARY

Editorial Address

Department of Mechanical Engineering, Engineering Faculty, Lambung Mangkurat University

Jl. Jenderal Achmad Yani Km. 35,5 Banjarbaru Telp. (0511)-4773858 Fax. 0511-4773858.

HP: 0853-3262-2556 (Andy Nugraha) and 0821-5232-0035 (Herry Irawansyah)

E-mail: j[email protected], [email protected][email protected]

Home Page: http://bit.ly/JurnalRotary

Lisensi Creative Commons
JTAM ROTARY di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.Department of Mechanical Engineering, Engineering Faculty,  Universitas Lambung Mangkurat