ANALISA EFISIENSI LAJU PENDINGINAN REFRIGERAN R-32, R-134A, R410A, DAN LPG PADA SIMULATOR REFRIGERATOR
Abstract
Efisiensi sistem refrigeran dengan fungsi sebagai fluida yang menyerap panas dalam sistem sehingga terjadi penurunan suhu melalui mekanisme evaporasi dan kondensasi. Percobaan ini dilakukan untuk mengetahui refrigeran yang mempunyai dampak laju pendinginan terbaik dengan tingkat temperatur yang berbeda sehingga dapat diamati laju pendinginan dari refrigeran R-134a, R-32, R-410a, dan LPG. Dalam prakteknya menggunakan simulator pendingin sebagai media pembelajaran dalam menerapkan prinsip kerja mesin refrigerasi. Metode penelitian yang dilakukan adalah dengan mengukur temperatur pada waktu 30 detik untuk pengambilan 1 data dan pengambilan data dilakukan selama 300 detik untuk menghasilkan 10 data pada tiap jenis refrigerant pada tekanan 10 Psi. Hasil penelitian menunjukkan refrigerant jenis LPG memiliki tingkat penurunan temperatur paling rendah diantara jenis refrigerant yang lain. Hal ini dikarenakan kinerja LPG dengan ODP sama dengan nol dan nilai GWP rendah. Kesimpulannya sistem pendingin domestik dapat menggunakan refrigeran jenis LPG di untuk penurunan temperatur yang lebih rendah.
Refrigerant system efficiency by functioning as a fluid that absorbs heat in the system resulting in a decrease in temperature through evaporation and condensation mechanisms. This experiment was conducted to find out which refrigerant has the best cooling rate effect at different temperature levels so that the cooling rates of R-134a, R-32, R-410a, and LPG refrigerants can be observed. In practice using a cooling simulator as a learning medium in applying the working principles of refrigeration machines. The research method used is to measure the temperature for 30 seconds for 1 data collection and 300 seconds for data collection to produce 10 data for each type of refrigerant at a pressure of 10 Psi. LPG type refrigerant has the lowest temperature drop among other refrigerant types. This is because the performance of LPG with ODP is equal to zero and GWP is low. In conclusion, domestic refrigeration systems can use LPG type refrigerants for lower temperature drops.
Keywords
Full Text:
PDFReferences
Amrullah, A., Djafar, Z., & Piarah, W. H. (2017). Analisa Kinerja Mesin Refrigerasi Rumah Tangga Dengan Variasi Refrigeran. JTT (Jurnal Teknologi Terapan), 3(2).
Babarinde, T. O., Ohunakin, O. S., Adelekan, D. S., Aasa, S. A., & Oyedepo, S. O. (2015). Experimental study of LPG and R134a refrigerants in vapor compression refrigeration. International Journal of Energy for a Clean Environment, 16(1–4), 71–80. https://doi.org/10.1615/InterJEnerCleanEnv.2016015644
Bhattacharyya, S., Mukhopadhyay, S., Kumar, A., Khurana, R. K., & Sarkar, J. (2005). Optimization of a CO2-C3H8 cascade system for refrigeration and heating. International Journal of Refrigeration, 28(8), 1284–1292. https://doi.org/10.1016/j.ijrefrig.2005.08.010.
El-Morsi, M. (2015). Energy and exergy analysis of LPG (liquefied petroleum gas) as a drop in replacement for R134a in domestic refrigerators. Energy, 86, 344-353.
Gill, J., & Singh, J. (2017a). Analyse énergétique d’un système frigorifique à compression de vapeur utilisant un mélange de R134a et de GPL comme frigorigène. International Journal of Refrigeration, 84, 287–299. https://doi.org/10.1016/j.ijrefrig.2017.08.001
Gill, J., & Singh, J. (2017b). Experimental Analysis of R134a/LPG as Replacement of R134a in a Vapor-Compression Refrigeration System. International Journal of Air-Conditioning and Refrigeration, 25(2), 1–13. https://doi.org/10.1142/S2010132517500158.
Guilherme, Í. F., Pico, D. F. M., dos Santos, D. D. O., & Bandarra Filho, E. P. (2022). A review on the performance and environmental assessment of R-410A alternative refrigerants. Journal of Building Engineering, 47, 103847.
Heredia-Aricapa, Y., Belman-Flores, J. M., Mota-Babiloni, A., Serrano-Arellano, J., & García-Pabón, J. J. (2020). Overview of low GWP mixtures for the replacement of HFC refrigerants: R134a, R404A and R410A. International Journal of Refrigeration, 111, 113–123. https://doi.org/10.1016/j.ijrefrig.2019.11.012.
Redhwan, A. A. M., Azmi, W. H., Sharif, M. Z., & Mamat, R. (2016). Development of nanorefrigerants for various types of refrigerant based: A comprehensive review on performance. International Communications in Heat and Mass Transfer, 76, 285-293.
Setiyo, M., Purnomo, B. C., Waluyo, B., Syaka, D. R. B., & Hamidi, N. (2018). Refrigeration effect and energy efficiency ratio (EER) calculation of 1/2 cycle refrigeration system on LPG-fueled vehicles. IOP Conference Series: Materials Science and Engineering, 403(1), 2–9. https://doi.org/10.1088/1757-899X/403/1/012087.
DOI: https://doi.org/10.20527/jtam_rotary.v5i1.8416
Refbacks
- There are currently no refbacks.
JTAM ROTARY
Editorial Address
Department of Mechanical Engineering, Engineering Faculty, Lambung Mangkurat University
Jl. Jenderal Achmad Yani Km. 35,5 Banjarbaru Telp. (0511)-4773858 Fax. 0511-4773858.
HP: 0853-3262-2556 (Andy Nugraha) and 0821-5232-0035 (Herry Irawansyah)
E-mail: j[email protected], [email protected], [email protected]
Home Page: http://bit.ly/JurnalRotary
JTAM ROTARY di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.Department of Mechanical Engineering, Engineering Faculty, Universitas Lambung Mangkurat