Sintesis Arang Batok Kelapa menjadi Material Maju Grafen Menggunakan Metode Reduksi Kimia
Abstract
ABSTRAK- Penelitian ini merupakan bentuk kajian sederhana yang memanfaatkan biomassa pertanian yaitu batok kelapa yang disintesis menjadi material maju grafen. Grafen merupakan salah satu material maju dan terbarukan dalam bidang sains dan teknologi terkini karena kemanfaatannya yang multifungsi. Penelitian ini diawali dengan mengubah biomassa batok kelapa menjadi karbon melalui suatu reaksi pembakaran. Arang hasil dari pembakaran selanjutnya diberikan perlakuan dengan metode reduksi kimia atau metode Hummer tereduksi. Hasil penelitian ini memperlihatkan bentuk morfologi grafen berupa serpihan-serpihan atau dikenal dengan istilah grafen Flakes. Hasil ini terkonfirmasi melalui uji visualisasi SEM, dimana grafen Flakes diperlihatkan dalam formasi tumpukan mengindikasikan struktur multilayer. Hasil uji TEM memperlihatkan jarak antar kisi kristal yang dimilikinya yaitu berkisar pada 2,40 dan 2,46 Å. Berdasarkan pada data jarak antar kisi kristal tersebut, hasil simulasi energi menggunakan prinsip DOS didapatkan bahwan grafen hasil sintesis memiliki energi secara berturut-turut adalah 4,0 eV untuk level konduksi dan 3,3 eV untuk level valensi. Hasil uji optik sifat absorbansi dan fluoresens memperlihatkan grafen memiliki dua puncak serapan utama yang berkorelasi dengan terjadinya transisi energi dan dari bentuk ikatan C=C dan C-O-C. Adapun pendaran yang dihasilkan melalui uji fluoresensi adalah warna hijau dengan panjang gelombang 525 nm. Secara sederhana rancangan penelitian dapat dikatakan telah berhasil dalam mensintesis grafen dari arang batok kelapa, meskipun belum sempurna dan masih perlu untuk dilakukan kajian kembali. Hasil dari penelitian ini selanjutnya akan dikembangkan lagi menjadi bentuk grafen dengan morfologi yang berpori.
ABSTRACT− This research is a simple study that takes an advantage of agricultural biomass that is synthesized cocconut shell to become graphene, an advanced material. Graphene is one of advanced-and-renewable material in the recent science and technology due to its multifunctional values.The research started with a changed cocconut shell being carbon through a burning reaction. Then the next procedure is given to the charcoal, produced from the burning process, by chemical reduction method or reduced hummer method.The observation showed a morphological form of graphen known as graphen flakes. It had been confirmed by SEM visualization test where the graphene flakes exhibited in a drift formafion indicated a multilayer structure. TEM test result showed a space in the owned crystal lattice approximately from 2.4 to 2.46 Å. Based on the data of the crystal lattice space, the result of energy simulation using DOS principal impressed that synthesized graphen has energy respectively 4.0 eV for a conduction and 3.3 eV for valency level. Therefore, the absorbantion and fluorecence result of the optical test showed that the graphen has two main absorptions corellated with the transitional energy of and to the form of C=C and C-O-C. However, emission resulted from fluorecence test is green with wavelength 525 nm. In a simple way, this reseach project can be resumed as a success study in the synthesized coconut from cocconut shell, while it had not been perfect, yet, and it needed to be advanced. Next, the outcome of the study will be developed more to be a porous graphen form
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Achee, T. C., Sun, W., Hope, J. T., Quitzau, S. G., Sweeney, C. B., Shah, S. A., Habib, T., & Green, M. J. (2018). High-yield scalable graphene nanosheet production from compressed graphite using electrochemical exfoliation. Scientific Reports, 8(1), 1–8. https://doi.org/10.1038/s41598-018-32741-3
Adel, M., El-Maghraby, A., El-Shazly, O., El-Wahidy, E. W. F., & Mohamed, M. A. A. (2016). Synthesis of few-layer graphene-like nanosheets from glucose: New facile approach for graphene-like nanosheets large-scale production. Journal of Materials Research, 31(4), 455–467. https://doi.org/10.1557/jmr.2016.25
Adil, S. F., Khan, M., & Kalpana, D. (2018). Graphene-based nanomaterials for solar cells. In Multifunctional Photocatalytic Materials for Energy. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-101977-1.00008-9
Ahirwar, S., Mallick, S., & Bahadur, D. (2017). Electrochemical Method to Prepare Graphene Quantum Dots and Graphene Oxide Quantum Dots. ACS Omega, 2(11), 8343–8353. https://doi.org/10.1021/acsomega.7b01539
Bai, R. G., Muthoosamy, K., Manickam, S., & Hilal-Alnaqbi, A. (2019). Graphene-based 3D scaffolds in tissue engineering: Fabrication, applications, and future scope in liver tissue engineering. International Journal of Nanomedicine, 14, 5753–5783. https://doi.org/10.2147/IJN.S192779
Bizao, R. A., Machado, L. D., De Sousa, J. M., Pugno, N. M., & Galvao, D. S. (2018). Scale effects on the ballistic penetration of graphene sheets. Scientific Reports, 8(1), 1–8. https://doi.org/10.1038/s41598-018-25050-2
Charmi, J., Nosrati, H., Mostafavi Amjad, J., Mohammadkhani, R., & Danafar, H. (2019). Polyethylene glycol (PEG) decorated graphene oxide nanosheets for controlled release curcumin delivery. Heliyon, 5(4), e01466. https://doi.org/10.1016/j.heliyon.2019.e01466
Chen, C. Y., Pu, N. W., Liu, Y. M., Huang, S. Y., Wu, C. H., Ger, M. Der, Gong, Y. J., & Chou, Y. C. (2017). Remarkable microwave absorption performance of graphene at a very low loading ratio. Composites Part B: Engineering, 114, 395–403. https://doi.org/10.1016/j.compositesb.2017.02.016
Costa, U. O., Nascimento, L. F. C., Garcia, J. M., Monteiro, S. N., da Luz, F. S., Pinheiro, W. A., & da Costa Garcia Filho, F. (2019). Effect of graphene oxide coating on natural fiber composite for multilayered ballistic armor. Polymers, 11(8). https://doi.org/10.3390/polym11081356
Das, V. K., Shifrina, Z. B., & Bronstein, L. M. (2017). Graphene and graphene-like materials in biomass conversion: Paving the way to the future. Journal of Materials Chemistry A, 5(48), 25131–25143. https://doi.org/10.1039/c7ta09418c
De Melo-Diogo, D., Lima-Sousa, R., Alves, C. G., & Correia, I. J. (2019). Graphene family nanomaterials for application in cancer combination photothermal therapy. Biomaterials Science, 7(9), 3534–3551. https://doi.org/10.1039/c9bm00577c
Deshmukh, M. A., Kang, B. C., & Ha, T. J. (2020). Non-enzymatic electrochemical glucose sensors based on polyaniline/reduced-graphene-oxide nanocomposites functionalized with silver nanoparticles. Journal of Materials Chemistry C, 8(15), 5112–5123. https://doi.org/10.1039/c9tc06836h
Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Buongiorno Nardelli, M., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Cococcioni, M., Colonna, N., Carnimeo, I., Dal Corso, A., De Gironcoli, S., Delugas, P., Distasio, R. A., Ferretti, A., Floris, A., Fratesi, G., … Baroni, S. (2017). Advanced capabilities for materials modelling with Quantum ESPRESSO. Journal of Physics Condensed Matter, 29(46). https://doi.org/10.1088/1361-648X/aa8f79
Giannozzi, Paolo, Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Dal Corso, A., De Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., … Wentzcovitch, R. M. (2009). QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. Journal of Physics Condensed Matter, 21(39). https://doi.org/10.1088/0953-8984/21/39/395502
Guo, H., Lv, R., & Bai, S. (2019). Recent advances on 3D printing graphene-based composites. Nano Materials Science, 1(2), 101–115. https://doi.org/10.1016/j.nanoms.2019.03.003
Horn, M., Gupta, B., MacLeod, J., Liu, J., & Motta, N. (2019). Graphene-based supercapacitor electrodes: Addressing challenges in mechanisms and materials. Current Opinion in Green and Sustainable Chemistry, 17, 42–48. https://doi.org/10.1016/j.cogsc.2019.03.004
Hossain, M. B., Islam, M. M., Abdulrazak, L. F., Rana, M. M., Akib, T. B. A., & Hassan, M. (2020). Graphene-Coated Optical Fiber SPR Biosensor for BRCA1 and BRCA2 Breast Cancer Biomarker Detection: a Numerical Design-Based Analysis. Photonic Sensors, 10(1), 67–79. https://doi.org/10.1007/s13320-019-0556-7
Hummers, W. S., & Offeman, R. E. (1958). Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80(6), 1339. https://doi.org/10.1021/ja01539a017
Jiang, F., Yu, Y., Wang, Y., Feng, A., & Song, L. (2017). A novel synthesis route of graphene via microwave assisted intercalation-exfoliation of graphite. Materials Letters, 200, 39–42. https://doi.org/10.1016/j.matlet.2017.04.048
Kim, J., Yoon, G., Kim, J., Yoon, H., Baek, J., Lee, J. H., Kang, K., & Jeon, S. (2018). Extremely large, non-oxidized graphene flakes based on spontaneous solvent insertion into graphite intercalation compound. Carbon, 139, 309–316. https://doi.org/10.1016/j.carbon.2018.06.071
Kong, X., Zhu, Y., Lei, H., Wang, C., Zhao, Y., Huo, E., Lin, X., Zhang, Q., Qian, M., Mateo, W., Zou, R., Fang, Z., & Ruan, R. (2020). Synthesis of graphene-like carbon from biomass pyrolysis and its applications. Chemical Engineering Journal, 399, 125808. https://doi.org/10.1016/j.cej.2020.125808
Li, Z., Zhang, W., & Xing, F. (2019). Graphene Optical Biosensors. International Journal of Molecular Sciences, 20(10), 24–28. https://doi.org/10.3390/ijms20102461
Lin, J., Huang, Y., & Huang, P. (2018). Graphene-Based Nanomaterials in Bioimaging. In Biomedical Applications of Functionalized Nanomaterials: Concepts, Development and Clinical Translation. Elsevier Inc. https://doi.org/10.1016/B978-0-323-50878-0.00009-4
Liu, J., Dong, J., Zhang, T., & Peng, Q. (2018). Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy. Journal of Controlled Release, 286(May), 64–73. https://doi.org/10.1016/j.jconrel.2018.07.034
Liu, L., Zhang, J., Zhao, J., & Liu, F. (2012). Mechanical properties of graphene oxides. Nanoscale, 4(19), 5910–5916. https://doi.org/10.1039/c2nr31164j
Maddu, A., Nugroho, R. A., Rustami, E., Arjo, S., & Hidayat, M. (2019). Synthesis of graphene/polyaniline nanocomposite for supercapacitor electrodes. Journal of Physics: Conference Series, 1171(1), 0–8. https://doi.org/10.1088/1742-6596/1171/1/012043
Mahmoudi, T., Wang, Y., & Hahn, Y. B. (2018). Graphene and its derivatives for solar cells application. Nano Energy, 47(January), 51–65. https://doi.org/10.1016/j.nanoen.2018.02.047
Monetta, T., Acquesta, A., & Bellucci, F. (2015). Graphene/epoxy coating as multifunctional material for aircraft structures. Aerospace, 2(3), 423–434. https://doi.org/10.3390/aerospace2030423
Muniyalakshmi, M., Sethuraman, K., & Silambarasan, D. (2020). Synthesis and characterization of graphene oxide nanosheets. Materials Today: Proceedings, 21, 408–410. https://doi.org/10.1016/j.matpr.2019.06.375
Muñoz, R., Singh, D. P., Kumar, R., & Matsuda, A. (2019). Graphene Oxide for Drug Delivery and Cancer Therapy. In Nanostructured Polymer Composites for Biomedical Applications. https://doi.org/10.1016/b978-0-12-816771-7.00023-5
Murata, H., Nakajima, Y., Saitoh, N., Yoshizawa, N., Suemasu, T., & Toko, K. (2019). High-Electrical-Conductivity Multilayer Graphene Formed by Layer Exchange with Controlled Thickness and Interlayer. Scientific Reports, 9(1), 1–5. https://doi.org/10.1038/s41598-019-40547-0
Oliveira, A. E. F., Braga, G. B., Tarley, C. R. T., & Pereira, A. C. (2018). Thermally reduced graphene oxide: synthesis, studies and characterization. Journal of Materials Science, 53(17), 12005–12015. https://doi.org/10.1007/s10853-018-2473-3
Omwenga, E. (2017). A model for evaluating e-learning systems quality in higher education in developing countries Kennedy Hadullo Technical University of Mombasa, Kenya. International Journal of Education and Development Using Information and Communication Technology, 13(2).
Peña-Bahamonde, J., Nguyen, H. N., Fanourakis, S. K., & Rodrigues, D. F. (2018). Recent advances in graphene-based biosensor technology with applications in life sciences. Journal of Nanobiotechnology, 16(1), 1–17. https://doi.org/10.1186/s12951-018-0400-z
Ramalingam, S., Elsayed, A., & Singh, A. (2020). An electrochemical microfluidic biochip for the detection of gliadin using MoS2/graphene/gold nanocomposite. Microchimica Acta, 187(12). https://doi.org/10.1007/s00604-020-04589-w
Roy, S., Rahman, I. A., Santos, J. H., & Ahmed, M. U. (2016). Meat species identification using DNA-redox electrostatic interactions and non-specific adsorption on graphene biochips. Food Control, 61, 70–78. https://doi.org/10.1016/j.foodcont.2015.09.029
Saxena, S., Tyson, T. A., Shukla, S., Negusse, E., Chen, H., & Bai, J. (2011). Investigation of structural and electronic properties of graphene oxide. Applied Physics Letters, 99(1), 5–8. https://doi.org/10.1063/1.3607305
Shang, L., Qi, Y., Lu, H., Pei, H., Li, Y., Qu, L., Wu, Z., & Zhang, W. (2019). Graphene and Graphene Oxide for Tissue Engineering and Regeneration. In Theranostic Bionanomaterials. Elsevier Inc. https://doi.org/10.1016/b978-0-12-815341-3.00007-9
Shehab, M., Ebrahim, S., & Soliman, M. (2017). Graphene quantum dots prepared from glucose as optical sensor for glucose. Journal of Luminescence, 184, 110–116. https://doi.org/10.1016/j.jlumin.2016.12.006
Su, F., Huo, L., Kong, Q., Xie, L., & Chen, C. (2018). Theoretical study on the quantum capacitance origin of graphene cathodes in lithium ion capacitors. Catalysts, 8(10). https://doi.org/10.3390/catal8100444
Sumaryada, T., Gunawan, M. S., Perdana, S., Arjo, S., & Maddu, A. (2019). A molecular interaction analysis reveals the possible roles of graphene oxide in a glucose biosensor. Biosensors, 9(1). https://doi.org/10.3390/bios9010018
Sun, H., Ge, G., Zhu, J., Yan, H., Lu, Y., Wu, Y., Wan, J., Han, M., & Luo, Y. (2015). High electrical conductivity of graphene-based transparent conductive films with silver nanocomposites. RSC Advances, 5(130), 108044–108049. https://doi.org/10.1039/c5ra24650d
Sun, L., Tian, C., Li, M., Meng, X., Wang, L., Wang, R., Yin, J., & Fu, H. (2013). From coconut shell to porous graphene-like nanosheets for high-power supercapacitors. Journal of Materials Chemistry A, 1(21), 6462–6470. https://doi.org/10.1039/c3ta10897j
Supeno, M., Pratama, A., & Haulian Purba, R. (2020). Adsorption of N-Graphene from Coconut Shell. Oriental Journal of Chemistry, 36(02), 280–285. https://doi.org/10.13005/ojc/360210
Sur, U. K., Saha, A., Datta, A., Ankamwar, B., Surti, F., Roy, S. D., & Roy, D. (2016). Synthesis and characterization of stable aqueous dispersions of graphene. Bulletin of Materials Science, 39(1), 159–165. https://doi.org/10.1007/s12034-015-0893-0
Szunerits, S., & Boukherroub, R. (2018). Graphene-based biosensors.
Terrones, M., Botello-Méndez, A. R., Campos-Delgado, J., López-Urías, F., Vega-Cantú, Y. I., Rodríguez-Macías, F. J., Elías, A. L., Muñoz-Sandoval, E., Cano-Márquez, A. G., Charlier, J. C., & Terrones, H. (2010). Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications. Nano Today, 5(4), 351–372. https://doi.org/10.1016/j.nantod.2010.06.010
Valencia, C., Valencia, C. H., Zuluaga, F., Valencia, M. E., Mina, J. H., & Grande-Tovar, C. D. (2018). Synthesis and application of scaffolds of chitosan-graphene oxide by the freeze-drying method for tissue regeneration. Molecules, 23(10). https://doi.org/10.3390/molecules23102651
Veeresh, S., Ganesh, H., Nagaraju, Y. S., Vandana, M., Ashokkumar, S. P., Yesappa, L., Vijeth, H., & Devendrappa, H. (2020). Structure, morphology and optical properties of graphene oxide. AIP Conference Proceedings, 2244(June), 5–9. https://doi.org/10.1063/5.0009205
Vincent, M., De Lázaro, I., & Kostarelos, K. (2017). Graphene materials as 2D non-viral gene transfer vector platforms. Gene Therapy, 24(3), 123–132. https://doi.org/10.1038/gt.2016.79
Xie, X., Zhou, Y., & Huang, K. (2019). Advances in microwave-assisted production of reduced graphene oxide. Frontiers in Chemistry, 7(JUN), 1–11. https://doi.org/10.3389/fchem.2019.00355
Yan, M., Liu, Y., Zhu, X., Wang, X., Liu, L., Sun, H., Wang, C., Kong, D., & Ma, G. (2019). Nanoscale Reduced Graphene Oxide-Mediated Photothermal Therapy Together with IDO Inhibition and PD-L1 Blockade Synergistically Promote Antitumor Immunity. ACS Applied Materials and Interfaces, 11(2), 1876–1885. https://doi.org/10.1021/acsami.8b18751
Yang, W., Ni, M., Ren, X., Tian, Y., Li, N., Su, Y., & Zhang, X. (2015). Graphene in Supercapacitor Applications. In Current Opinion in Colloid and Interface Science (Vol. 20, Issues 5–6, pp. 416–428). Elsevier Ltd. https://doi.org/10.1016/j.cocis.2015.10.009
Yang, Y., Asiri, A. M., Tang, Z., Du, D., & Lin, Y. (2013). Graphene based materials for biomedical applications. In Materials Today. https://doi.org/10.1016/j.mattod.2013.09.004
You, J. H., Ju, W. W., Li, E. Q., Pu, T. S., Zhao, Y. Y., & Wang, H. (2010). Fifth-nearest-neighbor tight-binding description of electronic structure of graphene. Communications in Theoretical Physics, 53(6), 1172–1176. https://doi.org/10.1088/0253-6102/53/6/36
Zhang, C., Zhang, Z., Yang, Q., & Chen, W. (2018). Graphene-based Electrochemical Glucose Sensors: Fabrication and Sensing Properties. Electroanalysis, 30(11), 2504–2524. https://doi.org/10.1002/elan.201800522
Zhang, D., Liu, T., Cheng, J., Cao, Q., Zheng, G., Liang, S., Wang, H., & Cao, M. S. (2019). Lightweight and High-Performance Microwave Absorber Based on 2D WS 2 –RGO Heterostructures. Nano-Micro Letters, 11(1), 1–15. https://doi.org/10.1007/s40820-019-0270-4
Zhang, Y. Y., & Gu, Y. T. (2013). Mechanical properties of graphene: Effects of layer number, temperature and isotope. Computational Materials Science, 71, 197–200. https://doi.org/10.1016/j.commatsci.2013.01.032
Zhu, X., Liu, Y., Li, P., Nie, Z., & Li, J. (2016). Applications of graphene and its derivatives in intracellular biosensing and bioimaging. Analyst, 141(15), 4541–4553. https://doi.org/10.1039/c6an01090c
Zhu, Yanwu, Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., & Ruoff, R. S. (2010). Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials, 22(35), 3906–3924. https://doi.org/10.1002/adma.201001068
Zhu, Yanyan, Zhang, X., Sun, J., Li, M., Lin, Y., Kang, K., Meng, Y., Feng, Z., & Wang, J. (2019). A non-enzymatic amperometric glucose sensor based on the use of graphene frameworks-promoted ultrafine platinum nanoparticles. Microchimica Acta, 186(8). https://doi.org/10.1007/s00604-019-3653-9
DOI: http://dx.doi.org/10.20527/flux.v18i2.10549
Article Metrics
Abstract view : 2100 timesPDF (Bahasa Indonesia) - 1356 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Jurnal Fisika Flux: Jurnal Ilmiah Fisika FMIPA Universitas Lambung Mangkurat
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Association with:
Indexed by:
Jurnal Fisika FLux: Jurnal Ilmiah FMIPA Universitas Lambung Mangkurat is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.