Studi Penumbuhan Grafena pada Temperatur Rendah Menggunakan Metode Hotwire-Plasma Enhanced Chemical Vapor Deposition

Jasruddin Jasruddin, Andi Momang Yusuf, Sulistiawaty Sulistiawaty

Abstract


Dalam penelitian ini, telah dilakukan penumbuhan grafena dengan menggunakan metode Hotwire-Plasma Enhanced Chemical Vapor Deposition (HW-PECVD). Metode ini merupakan metode kombinasi antara metode PECVD konvensional dan metode CVD termal dengan menambahkan elemen hot-wire. Plasma dibangkitkan dengan menggunakan frekuensi radio pada spektrum Very High Frequency (VHF) sebesar 70 MHz. Sampel grafena ditumbuhkan di atas substrat kaca SiO2 yang telah dilapisi lapisan katalis nikel dengan temperatur penumbuhan 300°C. Grafena yang dihasilkan dianalisis dengan menggunakan spektroskopi Raman. Spektrum Raman sampel menunjukkan bahwa sampel yang dihasilkan telah mengandung struktur grafitik yang ditunjukkan oleh keberadaan pita G yang tajam, disertai dengan pita D yang menunjukkan bahwa sampel tersebut juga mengandung sejumlah cacat pada struktur grafitiknya. Sementara itu, pita 2D yang tampak dalam spektra Raman masih relatif lemah yang memberi indikasi kualitas sampel yang buruk, mengandung banyak cacat, dan berukuran nanokristalin. Walaupun demikian, hasil ini menunjukkan adanya potensi besar untuk dapat menumbuhkan grafena pada temperatur rendah melalui metode HW-PECVD yang digunakan melalui optimasi parameter-parameter penumbuhan lebih lanjut seperti tekanan penumbuhan dan laju alir gas sumber termasuk mengoptimasi ketebalan lapisan katalis nikelnya.


Keywords


GRAFENA; GRAFITIK; HW-PECVD; SPEKTRA RAMAN

References


Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.-S., Zheng, Y., Balakrishnan, J., Lei, T., Ri Kim, H., Song, Y. Il, Kim, Y.-J., Kim, K. S., Özyilmaz, B., Ahn, J.-H., Hong, B. H., & Iijima, S. (2010). Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 5(8), 574–578. https://doi.org/10.1038/nnano.2010.132

Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (2008). Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett., 8(3), 902–907. https://doi.org/10.1021/nl0731872

Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., & Geim, A. K. (2009). The electronic properties of graphene. Reviews of Modern Physics, 81(1), 109–162. https://doi.org/10.1103/RevModPhys.81.109

Chen, J., Shi, W., Chen, Y., Yang, Q., Wang, M., Liu, B., Tang, Z., Jiang, M., Fang, D., & Xiong, C. (2016). Eco-friendly exfoliation of graphite into pristine graphene with little defect by a facile physical treatment. Applied Physics Letters, 108(7). https://doi.org/10.1063/1.4942192/31213

Chen, J.-H., Jang, C., Xiao, S., Ishigami, M., & Fuhrer, M. S. (2008). Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nature Nanotech, 3(4), 206–209. https://doi.org/10.1038/nnano.2008.58

Choi, S. H., Yun, S. J., Won, Y. S., Oh, C. S., Kim, S. M., Kim, K. K., & Lee, Y. H. (2022). Large-scale synthesis of graphene and other 2D materials towards industrialization. Nature Communications 2022 13:1, 13(1), 1–5. https://doi.org/10.1038/s41467-022-29182-y

Coroş, M., Pogăcean, F., Măgeruşan, L., Socaci, C., & Pruneanu, S. (2019). A brief overview on synthesis and applications of graphene and graphene-based nanomaterials. In Frontiers of Materials Science (Vol. 13, Issue 1, pp. 23–32). Higher Education Press. https://doi.org/10.1007/s11706-019-0452-5

Coroş, M., Pogəcean, F., Roşu, M. C., Socaci, C., Borodi, G., Mageruşan, L., Biriş, A. R., & Pruneanu, S. (2016). Simple and cost-effective synthesis of graphene by electrochemical exfoliation of graphite rods. RSC Advances, 6(4), 2651–2661. https://doi.org/10.1039/C5RA19277C

Deokar, G., Avila, J., Razado-Colambo, I., Codron, J. L., Boyaval, C., Galopin, E., Asensio, M. C., & Vignaud, D. (2015). Towards high quality CVD graphene growth and transfer. Carbon, 89, 82–92. https://doi.org/10.1016/j.carbon.2015.03.017

Dervishi, E., Ji, Z., Htoon, H., Sykora, M., & Doorn, S. K. (2019). Raman spectroscopy of bottom-up synthesized graphene quantum dots: size and structure dependence. Nanoscale, 11(35), 16571–16581. https://doi.org/10.1039/C9NR05345J

Ding, J. H., Zhao, H. R., & Yu, H. Bin. (2018). A water-based green approach to large-scale production of aqueous compatible graphene nanoplatelets. Scientific Reports 2018 8:1, 8(1), 1–8. https://doi.org/10.1038/s41598-018-23859-5

Du, X., Skachko, I., Barker, A., & Andrei, E. Y. (2008). Approaching ballistic transport in suspended graphene. Nature Nanotechnology 2008 3:8, 3(8), 491–495. https://doi.org/10.1038/nnano.2008.199

Ferrari, A. C., & Basko, D. M. (2013). Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature Nanotech, 8(4), 235–246. https://doi.org/10.1038/nnano.2013.46

Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S., & Geim, A. K. (2006). Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters, 97(18). https://doi.org/10.1103/PhysRevLett.97.187401

Ferrari, A. C., & Robertson, J. (2000). Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B, 61(20), 14095–14107. https://doi.org/10.1103/PhysRevB.61.14095

Hong, N., Kireev, D., Zhao, Q., Chen, D., Akinwande, D., & Li, W. (2022). Roll-to-Roll Dry Transfer of Large-Scale Graphene. Advanced Materials, 34(3), 2106615. https://doi.org/10.1002/ADMA.202106615

Lee, C., Wei, X., Kysar, J. W., & Hone, J. (2008). Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 321(5887), 385–388. https://doi.org/10.1126/science.1157996

Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S. K., Colombo, L., & Ruoff, R. S. (2009). Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324(5932), 1312–1314. https://doi.org/10.1126/science.1171245

Liu, H., Liu, Y., & Zhu, D. (2011). Chemical doping of graphene. J. Mater. Chem., 21(10), 3335–3345. https://doi.org/10.1039/C0JM02922J

Muñoz, R., & Gómez-Aleixandre, C. (2013). Review of CVD Synthesis of Graphene: Review of CVD Synthesis of Graphene. Chem. Vap. Deposition, 19(10-11–12), 297–322. https://doi.org/10.1002/cvde.201300051

Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., Peres, N. M. R., & Geim, A. K. (2008). Fine Structure Constant Defines Visual Transparency of Graphene. Science, 320(5881), 1308. https://doi.org/10.1126/science.1156965

Novoselov, K. S. (2004). Electric Field Effect in Atomically Thin Carbon Films. Science, 306(5696), 666–669. https://doi.org/10.1126/science.1102896

Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., & Firsov, A. A. (2004). Electric field in atomically thin carbon films. Science, 306(5696), 666–669. https://doi.org/10.1126/science.1102896

Seo, M., Pineda, S., Fang, J., Gozukara, Y., Yick, S., Bendavid, A., Lam, S., Murphy, T., s, Z., & Ostrikov, K. (Ken). (2016). Single-Step, Ambient-Air Synthesis of Graphene from Renewable Precursors and its Application as an Electrochemical Genosensor. https://doi.org/https://doi.org/10.1038/ncomms14217

Sun, J., Chen, Y., Cai, X., Ma, B., Chen, Z., Priydarshi, M. Kr., Chen, K., Gao, T., Song, X., Ji, Q., Guo, X., Zou, D., Zhang, Y., & Liu, Z. (2015). Direct low-temperature synthesis of graphene on various glasses by plasma-enhanced chemical vapor deposition for versatile, cost-effective electrodes. Nano Res., 8(11), 3496–3504. https://doi.org/10.1007/s12274-015-0849-0

Tan, H., Wang, D., & Guo, Y. (2018). Thermal Growth of Graphene: A Review. Coatings 2018, Vol. 8, Page 40, 8(1), 40. https://doi.org/10.3390/COATINGS8010040

Weatherup, R. S., Dlubak, B., & Hofmann, S. (2012). Kinetic Control of Catalytic CVD for High-Quality Graphene at Low Temperatures. ACS Nano, 6(11), 9996–10003. https://doi.org/10.1021/nn303674g

Wu, J.-B., Lin, M.-L., Cong, X., Liu, H.-N., & Tan, P.-H. (2018). Raman spectroscopy of graphene-based materials and its applications in related devices. Chemical Society Reviews, 47(5), 1822–1873. https://doi.org/10.1039/C6CS00915H

Yang, C., Bi, H., Wan, D., Huang, F., Xie, X., & Jiang, M. (2013). Direct PECVD growth of vertically erected graphene walls on dielectric substrates as excellent multifunctional electrodes. J. Mater. Chem. A, 1(3), 770–775. https://doi.org/10.1039/C2TA00234E

Yusuf, A. M., Abidin, K., Eliyana, A., Usman, I., Malago, J. D., Noor, F. A., & Winata, T. (2022). Effect of precursor gas inlet position relative to hot wire cells in HWC-IP-PECVD systems for low-temperature graphene growth. Materials Research Innovations, 1–7. https://doi.org/10.1080/14328917.2022.2091353

Zhang, C., Jiang, J. T., Guan, Z., Zhang, Y., Li, Y., Song, B., Shao, W., & Zhen, L. (2024). Unveiling the sp2─sp3 C─C Polar Bond Induced Electromagnetic Responding Behaviors by a 2D N-doped Carbon Nanosheet Absorber. Advanced Science, 11(4), 2306159. https://doi.org/10.1002/ADVS.202306159.




DOI: http://dx.doi.org/10.20527/flux.v21i3.19279

Article Metrics

Abstract view : 344 times
PDF (Bahasa Indonesia) - 256 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Jurnal Fisika Flux: Jurnal Ilmiah Fisika FMIPA Universitas Lambung Mangkurat

Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Association with:

Physical Society of Indonesia

Indexed by:

 

Creative Commons License
Jurnal Fisika FLux: Jurnal Ilmiah FMIPA Universitas Lambung Mangkurat is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.