Solusi Persamaan Schrodinger Tidak Bergantung Waktu Dengan Metode Finite Difference

I Gusti Agung Widagda, I Nengah Artawan, Wayan Gede Suharta, I Gde Antha Kasmawan

Abstract


The solution of time-independent Schrodinger equation (TISE) has been studied by several researchers. In this research, a TISE solution is found by using the finite difference method which is implemented in computer program code by using the Python language. TISE in the form of a second order differential equation is solved by using the finite difference method. In order to normalize the resulting wave function it is necessary to divide it by square root of the integral of the squared wave function. The integral method used is the Riemann method. In order to prove quantitatively that the TISE solution of the finite difference method is the same as or close to that of the analytical method, it is carried out by using linear regression and the z test. The research results show that the linear regression results from the two methods are nearly close. This is able to be seen from the values of  gradient (m), intercept (c) and coefficient of determination (R2) which are close to ideal values, namely, 1, 0 and 1, respectively. In addition, from the z test it is concluded that the null hypothesis H0 is accepted, which means the solution of finite difference method is equal to analytical solution by a confidence level of 95 percent.

Keywords


eda hingga, Schrodinger, Riemann, uji z, regresi linear

References


Baeyens, T., & Van Daele, M. (2021). The fast and accurate computation of eigenvalues and eigenfunctions of time-independent one-dimensional Schrödinger equations. Computer Physics Communications, 258, 107568. https://doi.org/10.1016/j.cpc.2020.107568

Beiser, A. (2003). Concepts of modern physics (6th ed.). New York: McGraw-Hill.

Bramer, M. (2020). Principles of data mining (4th ed.). London: Springer-Verlag London Ltd. https://doi.org/10.1007/978-1-4471-7493-6

Cecilia, Y., & Al-Faruq, A. (2019). Solusi metode numerik beda hingga pada visualisasi fungsi Gelombang persamaan Schrodinger potential non sentral Coulombic Rosen Morse. Sunan Kalijaga Journal of Physics, 1(1), 28–36.

Fleisch, D. A. (2020). A Student’s Guide to the Schr¨odinger Equation. Great Britain: Cambridge University Press.

Ghafouri, T., Golshan Bafghi, Z., Nouri, N., & Manavizadeh, N. (2020). Numerical solution of the Schrödinger equation in nanoscale side-contacted FED applying the finite-difference method. Results in Physics, 19. https://doi.org/10.1016/j.rinp.2020.103502

Gordillo-núñez, G., Alvarez-nodarse, R., & Quintero, N. R. (2024). The complete solution of the Schrödinger equation with the Rosen – Morse type potential via the Nikiforov – Uvarov method. Physica D: Nonlinear Phenomena, 458(November 2023), 134008. https://doi.org/10.1016/j.physd.2023.134008

Griffiths, D. J. (2005). Introduction to quantum mechanics (2nd ed.). USA: Pearson Prentice Hall.

Han, J., Zhang, L., & E, W. (2019). Solving many-electron Schrödinger equation using deep neural networks. Journal of Computational Physics, 399, 108929. https://doi.org/10.1016/j.jcp.2019.108929

Humaidi, S., Simbolon, T. R., Ong, R., & Afrida, W. N. (2016). Elektron dalam sumur potensial dengan menggunakan Mathematic 10. Prosiding Seminar Nasional Fisika (E-Journal) SNF2016, V, 19–24. http://snf-unj.ac.id/kumpulan-prosiding/snf2016/

Jamshir, N., Lari, B., & Hassanabadi, H. (2021). The time independent fractional Schrödinger equation with position-dependent mass. Physica A: Statistical Mechanics and Its Applications, 565, 125616. https://doi.org/10.1016/j.physa.2020.125616

Lombu, O. Z., Simbolon, T. R., & Ginting, T. (2013). Aplikasi metode beda hingga pada persamaan Schrödinger menggunakan Matlab. 0–6.

Montgomery, Douglas C.; Peck, Elizabeth A.; Vining, G. G. (2021). Introduction to Linear Regression Analysis (6th ed.). John Wiley & Sons, Inc.

Pine, D. J. (2019). Introduction to Python for Science and Engineering. CRC Press.

Plokhotnikov, K. E. (2020). About One Method of Numerical Solution of Schrodinger’s Equation. Mathematical Models and Computer Simulations, 12(2), 221–231. https://doi.org/10.1134/S2070048220020106

Rahmayani, H., Hidayati, & Razi, P. (2014). Perhitungan tingkat energi sumur potensial keadaan terikat melalui persamaan schrodinger menggunakan metode beda hingga. Pillar of Physics, 1, 17–24.

Weinberg, S. (2021). Foundations of Modern Physics. Cambridge University Press.

Widagda, I. G. A., Luh, N., Trisnawati, P., & Suharta, I. W. G. (2023). Perancangan aplikasi metode Newton-Rapshon termodifikasi dalam pembuktikan panjang gelombang maksimum pada hukum pergeseran Wien. Buletin Fisika, 2, 154–161.




DOI: http://dx.doi.org/10.20527/flux.v21i3.19289

Article Metrics

Abstract view : 103 times
PDF (Bahasa Indonesia) - 74 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Jurnal Fisika Flux: Jurnal Ilmiah Fisika FMIPA Universitas Lambung Mangkurat

Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Association with:

Physical Society of Indonesia

Indexed by:

 

Creative Commons License
Jurnal Fisika FLux: Jurnal Ilmiah FMIPA Universitas Lambung Mangkurat is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.