Solusi Persamaan Schrodinger Tidak Bergantung Waktu Dengan Metode Finite Difference
Abstract
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Baeyens, T., & Van Daele, M. (2021). The fast and accurate computation of eigenvalues and eigenfunctions of time-independent one-dimensional Schrödinger equations. Computer Physics Communications, 258, 107568. https://doi.org/10.1016/j.cpc.2020.107568
Beiser, A. (2003). Concepts of modern physics (6th ed.). New York: McGraw-Hill.
Bramer, M. (2020). Principles of data mining (4th ed.). London: Springer-Verlag London Ltd. https://doi.org/10.1007/978-1-4471-7493-6
Cecilia, Y., & Al-Faruq, A. (2019). Solusi metode numerik beda hingga pada visualisasi fungsi Gelombang persamaan Schrodinger potential non sentral Coulombic Rosen Morse. Sunan Kalijaga Journal of Physics, 1(1), 28–36.
Fleisch, D. A. (2020). A Student’s Guide to the Schr¨odinger Equation. Great Britain: Cambridge University Press.
Ghafouri, T., Golshan Bafghi, Z., Nouri, N., & Manavizadeh, N. (2020). Numerical solution of the Schrödinger equation in nanoscale side-contacted FED applying the finite-difference method. Results in Physics, 19. https://doi.org/10.1016/j.rinp.2020.103502
Gordillo-núñez, G., Alvarez-nodarse, R., & Quintero, N. R. (2024). The complete solution of the Schrödinger equation with the Rosen – Morse type potential via the Nikiforov – Uvarov method. Physica D: Nonlinear Phenomena, 458(November 2023), 134008. https://doi.org/10.1016/j.physd.2023.134008
Griffiths, D. J. (2005). Introduction to quantum mechanics (2nd ed.). USA: Pearson Prentice Hall.
Han, J., Zhang, L., & E, W. (2019). Solving many-electron Schrödinger equation using deep neural networks. Journal of Computational Physics, 399, 108929. https://doi.org/10.1016/j.jcp.2019.108929
Humaidi, S., Simbolon, T. R., Ong, R., & Afrida, W. N. (2016). Elektron dalam sumur potensial dengan menggunakan Mathematic 10. Prosiding Seminar Nasional Fisika (E-Journal) SNF2016, V, 19–24. http://snf-unj.ac.id/kumpulan-prosiding/snf2016/
Jamshir, N., Lari, B., & Hassanabadi, H. (2021). The time independent fractional Schrödinger equation with position-dependent mass. Physica A: Statistical Mechanics and Its Applications, 565, 125616. https://doi.org/10.1016/j.physa.2020.125616
Lombu, O. Z., Simbolon, T. R., & Ginting, T. (2013). Aplikasi metode beda hingga pada persamaan Schrödinger menggunakan Matlab. 0–6.
Montgomery, Douglas C.; Peck, Elizabeth A.; Vining, G. G. (2021). Introduction to Linear Regression Analysis (6th ed.). John Wiley & Sons, Inc.
Pine, D. J. (2019). Introduction to Python for Science and Engineering. CRC Press.
Plokhotnikov, K. E. (2020). About One Method of Numerical Solution of Schrodinger’s Equation. Mathematical Models and Computer Simulations, 12(2), 221–231. https://doi.org/10.1134/S2070048220020106
Rahmayani, H., Hidayati, & Razi, P. (2014). Perhitungan tingkat energi sumur potensial keadaan terikat melalui persamaan schrodinger menggunakan metode beda hingga. Pillar of Physics, 1, 17–24.
Weinberg, S. (2021). Foundations of Modern Physics. Cambridge University Press.
Widagda, I. G. A., Luh, N., Trisnawati, P., & Suharta, I. W. G. (2023). Perancangan aplikasi metode Newton-Rapshon termodifikasi dalam pembuktikan panjang gelombang maksimum pada hukum pergeseran Wien. Buletin Fisika, 2, 154–161.
DOI: http://dx.doi.org/10.20527/flux.v21i3.19289
Article Metrics
Abstract view : 103 timesPDF (Bahasa Indonesia) - 74 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Jurnal Fisika Flux: Jurnal Ilmiah Fisika FMIPA Universitas Lambung Mangkurat
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Association with:
Indexed by:
Jurnal Fisika FLux: Jurnal Ilmiah FMIPA Universitas Lambung Mangkurat is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.