ANALISIS KARAKTERISTIK DAN FORMULASI RAWA DENGAN PENDEKATAN VARIABEL HIDROLOGI RAWA
Abstract
Hydrological analysis of wetlands, including peatlands as part of watersheds, requires proper research according to the circumstances. A water balance formula calculating the equilibrium between rainfall, evapotranspiration, surface water, and groundwater is essential for recognizing wetland conditions. Analysis of the watershed flow where the wetland is located can use the rational formulas and the unit hydrograph methods of generated flow that consider suitability for the wetland conditions. This analysis is carried out by calculating the influence of variables on the wetland; rainfall, surface flow, and water detention. Other variables related to soil properties have an influential aspect in determining flow generation.
The overall variables effect is reflected in the changes in the downstream flow hydrograph of a watershed. It mainly seems in the recession curve of the flood hydrograph. The peak of the flow decreases in order to wetland presence. This change is a composite of the upstream flow alteration and wetland storage influence. The influence of wetland areas is also found in flood volume, which shows a proportional relationship, namely that the increase in wide wetland areas affects the decrease in flood volume.
Keywords
Full Text:
PDFReferences
Acreman, M. C., Fisher, J., Stratford, C. J., Mould, D. J., & Mountford, J. O. (2007). Hydrological science and wetland restoration: Some case studies from Europe. Hydrology and Earth System Sciences, 11(1), 158–169. https://doi.org/10.5194/hess-11-158-2007
Acreman, M. C., & Miller, F. (2007). Hydrological impact assessment of wetlands. International Symposium on Groundwater Sustainability (ISGWAS), 225–255. http://info.ngwa.org/servicecenter/shopper/ProductDetail.cfm?ProdCompanyPassed=ngw&ProdCdPassed=ngw-t1051
Acreman, M., & Holden, J. (2013). How wetlands affect floods. Wetlands, 33(5), 773–786. https://doi.org/10.1007/s13157-013-0473-2
Ahmed, F. (2014). Cumulative Hydrologic Impact of Wetland Loss: Numerical Modeling Study of the Rideau River Watershed, Canada. Journal of Hydrologic Engineering, 19(3), 593–606. https://doi.org/10.1061/(asce)he.1943-5584.0000817
Ahmed, F. (2017). Influence of Wetlands on Black-Creek Hydraulics. Journal of Hydrologic Engineering, 22(1), 1–12. https://doi.org/10.1061/(asce)he.1943-5584.0001401
Alaska Department of Fish and Game. (1992). Wetland Classification, Inventory, and Assessment Methods: An Alaska Guide to their Fish and Wildlife Application. 234.
Amal, N., Sujono, J., Jayadi, R., & Ohgushi, K. (2021). Variability of Water Table Elevation and Flow Response of Tropical Peatland Case Study at Pulau Padang , Riau , Indonesia. 22(June), 135–141.
Amal, N., Sujono, J., & Jayadi, R. (2019). Water Table Variability and Flow Response of Tropical Peatland - A Case Study. September, 1–7.
Bengtson, M. L., & Padmanabhan, G. (1999). Hydrologic Model for Assessing the Influence of Wetlands on Flood Hydrographs in the Red River Basin. November, 60. http://ijc.org/rel/pdf/wetlandndsu.pdf
Bromberg, S. M. (1990). Identifying ecological indicators: An environmental monitoring and assessment program. Journal of the Air and Waste Management Association, 40(7), 976–978. https://doi.org/10.1080/10473289.1990.10466748
Bullock, A., & Acreman, M. (2003). The role of wetlands in the hydrological cycle. Hydrology and Earth System Sciences, 7(3), 358–389. https://doi.org/10.5194/hess-7-358-2003
Conference, I. (1998). Supervising Scientist Report 161. Darwin, November, 8–14.
Demissie, Misganaw, Akanbi, A., & Khan, A. (1997). Hydrologic Modeling of Landscape Functions of Wetlands. April, 49.
Farrier, D., & Tucker, L. (2000). Wise use of wetland under the Ramsar Convention: A challenge for meaningful implementation of international law. 12(1), 21–42.
Ferrari, M. R., Miller, J. R., & Russell, G. L. (1999). Modeling the effect of wetlands, flooding, and irrigation on river flow: Application to the Aral Sea. Water Resources Research, 35(6), 1869–1876. https://doi.org/10.1029/1999WR900035
Finlayson, C. M. (2001). Considerations for undertaking a wetland inventory. 2nd International Conference on Wetlands and Development, 161(Scott 1989), 11–22.
Glenn, E. P., Mexicano, L., Garcia-Hernandez, J., Nagler, P. L., Gomez-Sapiens, M. M., Tang, D., Lomeli, M. A., Ramirez-Hernandez, J., & Zamora-Arroyo, F. (2013). Evapotranspiration and water balance of an anthropogenic coastal desert wetland: Responses to fire, inflows and salinities. Ecological Engineering, 59, 176–184. https://doi.org/10.1016/j.ecoleng.2012.06.043
Grundling, P. L., Clulow, A. D., Price, J. S., & Everson, C. S. (2015). Quantifying the water balance of Mfabeni mire (Isimangaliso wetland park, South Africa) to understand its importance, functioning and vulnerability. Mires and Peat, 16, 1–18.
Maltby, E., & Acreman, M. C. (2011). Services écosystémiques des zones humides: Éclaireur pour un nouveau paradigme. Hydrological Sciences Journal, 56(8), 1341–1359. https://doi.org/10.1080/02626667.2011.631014
Mclaughlin, D. L., & Cohen, M. J. (2016). Realizing ecosystem services : wetland hydrologic function along a gradient of ecosystem condition Author ( s ): Daniel L . McLaughlin and Matthew J . Cohen Published by : Wiley Stable URL : http://www.jstor.org/stable/23596786 Accessed : 30-06-2016 10 : . 23(7), 1619–1631.
Meyer, A. J. (1998). Estimating the effect wetlands have on flood hydrograph through computer simulation. Dissertation, 274.
Michot, B., Meselhe, E. A., Rivera-Monroy, V. H., Coronado-Molina, C., & Twilley, R. R. (2011). A tidal creek water budget: Estimation of groundwater discharge and overland flow using hydrologic modeling in the Southern Everglades. Estuarine, Coastal and Shelf Science, 93(4), 438–448. https://doi.org/10.1016/j.ecss.2011.05.018
Mitsch, William J, Gosselink, J. G. (2015). Wetlands Fifth Edition. In Wi Ley (Vol. 91, Issue 5).
Nepal, S., Flügel, W., & Shrestha, A. B. (2014). Upstream-downstream linkages of hydrological processes in the Himalayan region. 1–16.
Noor, M. (2007). Rawa Lebak, Ekologi, Pemanfaatan dan Pengembangannya. In Raja Grafindo Persada, Jakarta.
Nungesser, M. K., & Chimney, M. J. (2006). A hydrologic assessment of the Everglades Nutrient Removal Project, a subtropical constructed wetland in South Florida (USA). Ecological Engineering, 27(4), 331–344. https://doi.org/10.1016/j.ecoleng.2006.08.007
Ogawa, H., & Male, J. W. (1986). Simulating the Flood Mitigation Role of Wetlands. Journal of Water Resources Planning and Management, 112(1), 114–128. https://doi.org/10.1061/(asce)0733-9496(1986)112:1(114)
Ramsar Convention Secretariat. (2010). Handbook 15 Wetland inventory: A Ramsar framework for wetland inventory and ecological character description. Ramsar Handbooks for the Wise Use of Wetlands, 15, 79.
Reddy, K. R., & DeLaune, R. D. (2008). Biogeochemistry of wetlands science and applications.
Sandoval, E., Price, R. M., Whitman, D., & Melesse, A. M. (2016). Long-term (11 years) study of water balance, flushing times and water chemistry of a coastal wetland undergoing restoration, Everglades, Florida, USA. Catena, 144, 74–83. https://doi.org/10.1016/j.catena.2016.05.007
Schwerdtfeger, J., Weiler, M., Johnson, M. S., & Couto, E. G. (2014). Estimation des composantes du bilan hydrique en saison sèche des lacs des zones humides tropicales du Pantanal (Brésil). Hydrological Sciences Journal, 59(12), 2158–2172. https://doi.org/10.1080/02626667.2013.870665
Scott, A. D. A., & Jones, T. A. (2015). Classification and Inventory of Wetlands: A Global Overview Author(s): D. A. Scott and T. A. Jones Source: 118(1), 3–16.
Simonovic, S. P., & Juliano, K. M. (2001). The role of wetlands during low frequency flooding events in the Red River basin. Canadian Water Resources Journal, 26(3), 377–397. https://doi.org/10.4296/cwrj2603377
Spiers, A. G. (2001). Wetland inventory: Overview at a global scale. 2nd International Conference on Wetlands and Development, 161, 23–30.
Sullivan, P. L., Price, R. M., Schedlbauer, J. L., Saha, A., & Gaiser, E. E. (2014). The influence of hydrologic restoration on groundwater-surface water interactions in a Karst Wetland, the Everglades (FL, USA). Wetlands, 34(SUPPL. 1). https://doi.org/10.1007/s13157-013-0451-8
Szporak-Wasilewska, S., Piniewski, M., Kubrak, J., & Okruszko, T. (2015). What we can learn from a wetland water balance? Narew National Park case study. Ecohydrology and Hydrobiology, 15(3), 136–149. https://doi.org/10.1016/j.ecohyd.2015.02.003
Wardrop, D. H., Kentula, M. E., Jensen, S. F., Stevens, D. L., Hychka, K. C., & Brooks, R. P. (2007). Assessment of wetlands in the upper juniata watershed in Pennsylvania, USA using the hydrogeomorphic approach. Wetlands, 27(3), 432–445. https://doi.org/10.1672/0277-5212(2007)27[432:AOWITU]2.0.CO;2
Whitfield, P. H., St-Hilaire, A., & Van Der Kamp, G. (2009). Improving hydrological predictions in peatlands. Canadian Water Resources Journal, 34(4), 467–478. https://doi.org/10.4296/cwrj3404467
Zapata-Rios, X., & Price, R. M. (2012). Évaluations des apports d’eaux souterraines vers une zone humide côtière à l’aide de techniques multiples: Taylor Slough, Everglades National Park, USA. Hydrogeology Journal, 20(8), 1651–1668. https://doi.org/10.1007/s10040-012-0907-6
DOI: http://dx.doi.org/10.20527/infotek.v22i1.11559
DOI (PDF): http://dx.doi.org/10.20527/infotek.v22i1.11559.g7366
Article Metrics
Abstract view : 464 timesPDF - 502 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 INFO-TEKNIK
This work is licensed under a�Creative Commons Attribution 4.0 International License.�
Indexed By:
Citation :
SINTA 6 mulai Vol. 19 No. 2 2018 (SK NO. 164/E/KPT/2021)GOOGLE SCHOLAR : Sitasi = 78, H-index = 5, i10-index = 2
IPI :� Artikel = 100
IOS 3969 : Artikel = 239
�