A Review: Optimum Conditions for Magnetite Synthesis (Fe3O4)

Dominikus Niholan Tukan, Lilis Rosmainar, Kustomo Kustomo, Rasidah Rasidah

Abstract


Magnetite, chemically represented as Fe3O4, is an opaque substance characterized by its black coloration. It possesses a significant saturation magnetization value, denoting a substantial magnetic strength compared to alternative materials. Magnetite (Fe3O4) has significant use across several domains, including its deployment as a catalyst and sensor in the medical sector, such as drug delivery, hyperthermia therapy, and magnetic resonance imaging (MRI). The synthesis of magnetite (Fe3O4) can be achieved using several methodologies, such as solvothermal, sol-gel, solid state, reverse micelle, microwave plasma synthesis, freeze drying, ultrasound irradiation, hydrothermal, and coprecipitation techniques. The co-preparation technique is extensively employed for magnetite synthesis due to its simplicity, ease of usage, and ability to generate magnetic particles at the nanoscale scale without elevated temperatures. The outcome of the coprecipitation process is influenced by various factors such as the nature of the salt, molar ratio, pH level, stirring rate, and reaction temperature. This article aims to examine the impact of many factors, including the salt type, molar ratio, pH level, stirring rate, and reaction temperature, on the production of Magnetite (Fe3O4) through coprecipitation. It was found that Magnetite (Fe3O4) synthesis can produce nanoparticle size material with great magnetic power, namely at pH 8, temperature 70°C, and stirring rate of 10,000 rpm by using FeCl3 and FeCl2 as precursors Fe3+ and Fe2+ with a ratio of 1.5:1 and using precipitating base NH4OH.


Full Text:

PDF

References


Agnestisia, R. (2017). Sintesis Dan Karakterisasi Magnetit (Fe 3 O 4 ) Serta Aplikasinya Sebagai Adsorben Methylene Blue. Sains Dan Terapan Kimia, 11(2), 61–70.

Astuti, & Hasanah, A. P. I. (2012). Pengaruh Waktu Pemanasan Terhadap Sintesis Nanopartikel Fe 3 O 4. Jurnal Ilmu Fisika, 4(1), 20–25.

Damasceno, B. S., Silva, A. F. V. Da, & Araújo, A. C. V. De. (2020). Journal Of Environmental Chemical Engineering Dye Adsorption Onto Magnetic And Superparamagnetic Fe 3 O 4 Nanoparticles : A Detailed Comparative Study. Journal Of Environmental Chemical Engineering, 8(5), 103994. Https://Doi.Org/10.1016/J.Jece.2020.103994

El-Kharrag, R., Amin, A., & Greish, Y. E. (2012). Low Temperature Synthesis Of Monolithic Mesoporous Magnetite Nanoparticles. Ceramics International, 38(1), 627–634. Https://Doi.Org/10.1016/J.Ceramint.2011.07.052

Gnanaprakash, G., Mahadevan, S., Jayakumar, T., Kalyanasundaram, P., Philip, J., & Raj, B. (2007). Effect Of Initial Ph And Temperature Of Iron Salt Solutions On Formation Of Magnetite Nanoparticles. Materials Chemistry And Physics, 103, 168–175. Https://Doi.Org/10.1016/J.Matchemphys.2007.02.011

Hariani, P. L., Faizal, M., Ridwan, Marsi, & Setiabudidaya, D. (2013). Synthesis And Properties Of Fe 3 O 4 Nanoparticles By Co-Precipitation Method To Removal Procion Dye. International Journal Of Environmental Science And Development, 4(3), 336–340. Https://Doi.Org/10.7763/Ijesd.2013.V4.366

He, K., Xu, C., Zhen, L., & Shao, W. (2007). Hydrothermal Synthesis And Characterization Of Single-Crystalline Fe 3 O 4 Nanowires With High Aspect Ratio And Uniformity. Materials Letters, 61, 3159–3162. Https://Doi.Org/10.1016/J.Matlet.2006.11.023

Kustomo, K. (2020). Indonesian Journal Of Chemical Science Uji Karakterisasi Dan Mapping Magnetit Nanopartikel Terlapisi Asam Humat Dengan Scanning Electron Microscope-Energy Dispersive X-Ray (Sem-Edx). Indonesian Journal Of Chemical Science, 9(3).

Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Elst, L. Vander, & Muller, R. N. (2008). Magnetic Iron Oxide Nanoparticles : Synthesis , Stabilization , Vectorization , Physicochemical Characterizations , And Biological Applications. 2064–2110.

Mascolo, M. C., Pei, Y., & Ring, T. A. (2013). Room Temperature Co-Precipitation Synthesis Of Magnetite Nanoparticles In A Large Ph Window With Different Bases. Materials, 6, 5549–5567. Https://Doi.Org/10.3390/Ma6125549

Maylani, A. S., Sulistyaningsih, T., & Kusumastuti, E. (2016). Preparasi Nanopartikel Fe3o4 (Magnetit) Serta Aplikasinya Sebagai Adsorben Ion Logam Kadmium. Indonesian Journal Of Chemical Science, 5(2), 1–6.

Nalle, F. C., Wahid, R., Wulandari, I. O., & Sabarudin, A. (2019). Synthesis And Characterization Of Magnetic Fe 3 O 4 Nanoparticles Using Oleic Acid As Stabilizing Agent. Rasayan Journal Chemistry, 12(1), 14–21.

Ngatijo, Gusmaini, N., Bemis, R., & Basuki, R. (2021). Adsorpsi Methylene Blue Pada Nanopartikel Magnetit Tersalut Asam Humat : Kajian Isoterm Dan Kinetika. Cheesa: Chemical Engineering Research Articles, 4(1), 51–65. Https://Doi.Org/10.25273/Cheesa.V4i1.8433.51-64

Niu, J. M., & Zheng, Z. G. (2014). Effect Of Temperature On Fe 3 O 4 Magnetic Nanoparticles Prepared By Coprecipitation Method. Advanced Materials Research, 900, 172–176. Https://Doi.Org/10.4028/Www.Scientific.Net/Amr.900.172

Prasetyowati, R., Widiawati, D., Swastika, P. E., Ariswan, & Warsono. (2021). Berbasis Pasir Besi Pantai Glagah Kulon Progo Dengan Metode Kopresipitasi Pada Berbagai Variasi Konsentrasi Nh 4 Oh. Jurnal Sains Dasar, 10(2), 57–61.

Rahmayanti, M. (2020). Original Article Synthesis Of Magnetite Nanoparticles Using Reverse Co-Precipitation Method With Nh4oh As Precipitating Agent And Its Stability Test At Various Ph. Natural Science: Journal Of Science And Technology, 9(3), 54–58. Https://Doi.Org/10.22487/25411969.2020.V9.I3.15298

Rahmayanti, M., & Santosa, S. J. (2020). Modified Humic Acid From Peat Soils With Magnetite ( Ha-Fe 3 O 4 ) By Using Sonochemical Technology For Gold Recovery. Jurnal Bahan Alam Terbarukan, 9(2), 81–87.

Ramadan, W., Kareem, M., Hannoyer, B., & Saha, S. (2012). Effect Of Ph On The Structural And Magnetic Properties Of Magnetite Effect Of Ph On The Structural And Magnetic Properties Of Magnetite Nanoparticles Synthesised By Co-Precipitation. Advanced Materials Research, 324(November 2014), 129–132. Https://Doi.Org/10.4028/Www.Scientific.Net/Amr.324.129

Sajidah, H. B. N. (2017). Review : Proses Sintesis Material Anorganik Menggunakan Prekursor Oksalat Dalam Metode Kopresipitasi. December.

Valenzuela, R., Cecilia, M., Parra, C., Baeza, J., Duran, N., Sharma, S. K., Knobel, M., & Freer, J. (2009). Influence Of Stirring Velocity On The Synthesis Of Magnetite Nanoparticles ( Fe 3 O 4 ) By The Co-Precipitation Method. Journal Of Alloys And Compounds, 488, 227–231. Https://Doi.Org/10.1016/J.Jallcom.2009.08.087

Wang, B., Wei, Q., & Qu, S. (2013). Synthesis And Characterization Of Uniform And Crystalline Magnetite Nanoparticles Via Oxidation-Precipitation And Modified Co-Precipitation Methods. International Journal Of Electrochemical Science, 8, 3786–3793.

Wang, X., Liao, Y., Zhang, D., Wen, T., & Zhong, Z. (2018). A Review Of Fe3o4 Thin Films: Synthesis, Modification And Applications. Journal Of Materials Science & Technology, 2010. Https://Doi.Org/10.1016/J.Jmst.2018.01.011

Yan, A., Liu, X., Qiu, G., Wu, H., Yi, R., Zhang, N., & Xu, J. (2008). Solvothermal Synthesis And Characterization Of Size-Controlled Fe 3 O 4 Nanoparticles. Journal Of Alloys And Compounds, 458, 487–491. Https://Doi.Org/10.1016/J.Jallcom.2007.04.019

Yazdani, F., & Seddigh, M. (2016). Magnetite Nanoparticles Synthesized By Co-Precipitation Method; The Effects Of Various Iron Anions On Specifications. Materials Chemistry And Physics. Https://Doi.Org/10.1016/J.Matchemphys.2016.09.058

Zhang, J., Lin, S., Han, M., Su, Q., Xia, L., & Hui, Z. (2020). Adsorption Properties Of Magnetic Magnetite Nanoparticle For Coexistent Cr ( Vi ) And Cu ( Ii ) In Mixed Solution. Vi, 1–13. Https://Doi.Org/10.3390/W12020446




DOI: http://dx.doi.org/10.20527/jstk.v17i2.15134

Article Metrics

Abstract view : 384 times
PDF - 1182 times

Refbacks

  • There are currently no refbacks.


Dear colleagues,

We are pleased to inform you that the result of our application for journal accreditation has been finalized through the Arjuna system. Based on the assessment result, Jurnal Ilmiah Berkala Sains dan Terapan Kimia  has now been officially accredited by Ministry of Research, Technology, and Higher Education of Republic of Indonesia with a predicate of SINTA 3. The official letter of the accreditation result is available through this link.

We hope that this accreditation result will lead us to more publications with better quality.

Sincerely,

Editorial Team of JIB Sains dan Terapan Kimia.


Alamat Redaksi:
Jl. A. Yani, KM. 36, 
PROGRAM STUDI KIMIA
Kampus Fakultas Matematika dan Pengetahuan Alam, Gedung I,
Universitas Lambung Mangkurat, Banjarbaru (73714)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.