Inhibisi Enzim α-Glukosidase oleh Bacillus Megaterium ITU 9 Isolat Sumber Air Panas Sumatera Utara
Abstract
Diabetes adalah penyakit multifaktor yang insidensinya meningkat dengan pesat di negara berkembang. Diabetes mellitus (DM) tipe 2 adalah jenis diabetes yang paling umum ditemui, dimana penyakit ini erat kaitannya dengan kemajuan industri dan teknologi sehingga mempengaruhi gaya hidup seseorang. Penanggulangan penyakit ini dapat dilakukan dengan menghambat aktivitas α-glukosidase. Beberapa mikroorganisme terutama dari sumber air panas dapat dimanfaatkan sebagai penghasil senyawa inhibitor α-glukosidase. Pada penelitian sebelumnya isolat Bacillus megaterium ITU 9 merupakan isolat yang diisolasi dari sumber air panas. Pada penelitian ini diuji kemampuan isolat Bacillus megaterium ITU 9 sebagai penghasil inhibitor α-glukosidase dengan metode sumur. Daya persen inhibisi supernatan B. megaterium ITU 9 terhadap kerja enzim α-glukosidase adalah sebesar 46,67%, sedangkan daya persen inhibisi acarbose yaitu 70%. Dalam hal ini B. megaterium ITU 9 termofilik memiliki daya inhibisi terhadap enzim α-glukosidase.
Kata Kunci: Bakteri Termofilik, Inhibitor, Akarbose, Metode Sumur, Persen Inhibisi
Diabetes is a multifactorial disease whose incidence is increasing rapidly in developing countries. Diabetes mellitus (DM) type 2 is the most common type of diabetes, where this disease is closely related to industrial and technological advances, thus affecting a person's lifestyle. This disease can be controlled by inhibiting α-glucosidase activity. Several microorganisms, especially from hot springs, can be used to produce α-glucosidase inhibitor compounds. In previous research, the Bacillus megaterium ITU 9 isolate was an isolate isolated from hot springs. In this study, the ability of the Bacillus megaterium ITU 9 isolate to produce α-glucosidase inhibitors was tested using the well method. The percent inhibition power of B. megaterium ITU 9 supernatant on the action of the α-glucosidase enzyme was 46.67%, while the percent inhibition power of acarbose was 70%. In this case, the thermophilic B. megaterium ITU 9 has inhibitory power against the α-glucosidase enzyme.
Keywords
Full Text:
PDFReferences
Alrumman, S. Yasser, S. M. M., Shekha, A. Q., & Tarek, H. T. T. (2018). Hydrolytic enzyme production by thermophilic bacteria isolated from Saudi hot springs. 5(13): 470-480. doi: 10.1515/biol-2018-0056
Febrinda, A. E., Made, A., Tutik, W., & Nancy, D. Y. (2013). Kapasitas antioksidan dan inhibitor alfa glukosidase ekstrak umbi bawang dayak. J. Teknol. Dan Industri Pangan. 24(2): 161-167.
Gao, Y. et al. (2022). Glucosidase Inhibitory Activity of Fermented Okara Broth Started with the Strain Bacillus amyloliquefaciens SY07. Molecules. 27:1-11. https://doi.org/10.3390/molecules27031127
Ginting, C. N., Finna, P., Harmileni, & Edy, F. (2023). Molecular identification of thermophilic bacteria with antimicrobial activity isolated from hot springs in North Sumatra, Indonesia. Biodiversitas. 24(2): 752-758. DOI: 10.13057/biodiv/d240210
Hossain, U., Abhishek, K.D., Sumit, G., Parames, C. Sill. (2020). An overview on the role bioactive alpha glucosidase inhibitors in ameliorationg diabetic complications. Food and Chemical Toxicology. https://doi.org/10.1016/j.fct.2020.111738
Igarashi, Y. et al. (2019). Ktedonoketone and 2’-oxosattabacin, benzenoid metabolites from a thermophilic bacterium Thermosporothrix hazakensis in the phylum Chloroflexi. JARA. https://doi.org/10.1038/s41429-019-0195-7
Ischak, N. I., Yuszda K. S., & Deasy, N. B. (2017). Buku Ajar Biokimia Dasar. UNG Press
Kim, H. W., Choi, S. Y., Lee, D. C., & Rhee, H.I. (2023). Intestinal Production of Alpha-Glucosidase Inhibitor by Bacillus coagulans Spores. Microorganisms. 11(6). https://doi.org/10.3390/microorganisms11061462
Nofiani, R., Nurbetty, S., & Sapar, A. (2009). Antimicrobial activities of methanol extract from unidentifi ed sponge associated bacteria in Lemukutan Island, Kalimantan Barat. Jurnal Ilmu dan Teknologi Kelautan Tropis, 1(2), 33-41.
Octarya, Z., Titania, T. N., Yuana, N., & Saryono. (2022). Molecular Identification, GC-MS Analysis of Bioactive Compounds and Antimicrobial Activity of Thermophilic Bacteria Derived from West Sumatra Hot-Spring Indonesia. HAYATI Journal of Biosciences. 29(4): 549-561. DOI:10.4308/hjb.29.4.549-561
Ouassou, H., et al. (2018). Inhibition of α-glucosidase, intestinal glucose absorption, and antidiabetic properties by Caralluma europaea. Hindawi. https://doi.org/10.1155/2018/9589472
Roy, C. et al. (2020). Microbiome and ecology of a hot spring-microbialite system on the Trans-Himalayan Plateau. Scientific Reports.
Sarjono, P. R., Hendra, D. R. M., Nies S. M. N., Nor, B. A. P., & Ismiyarto. (2020). Aktivitas antidiabetes metabolit sekunder bakteri endofit asal kulit kayu manis. Saintek. 25(2): 143-156.
Shai, L. J., et al. (2010). Yeast alpha glucosidase inhibitory and antioxidant activities of six medicinal plants collected in Phalaborwa, South Africa. South African Journal of Botany. 76(3): 465-470. https://doi.org/10.1016/j.sajb.2010.03.002
Simon, A., Joan, C., Shahneela, M., Ekaterina, K., John, D., & Kieran, R. (2023). Bacillus megaterium Renuspore® as a potential probiotic for gut health and detoxification of unwanted dietary contaminants. Frontiers in Microbiology. DOI 10.3389/fmicb.2023.1125616
Susilowati, A., Citra, P. Y. D., & Siti, L. A. S. (2019). Isolation and identification of endophytic bacteria from Salak Pondoh (Salacca edulis) fruit as a-glycosidase inhibitor producer. Biosaintifika. 11(3): 352-359. DOI: http://dx.doi.org/10.15294/biosaintifika.v11i3.21031
Wahyuni, S. (2017). Biokimia Enzim dan Karbohidrat. UNIMAL Press. Lhoukseumawe
Wu, J., et al. (2019). Endophytic Bacillus megaterium BM18-2 mutated for cadmium accumulation and improving plant growth in Hybrid Pennisetum. Biotechnology Reports. https://doi.org/10.1016/j.btre.2019.e00374
Yao, J., Lili, W., Wenju, Z., Mengjian, L., & Junli, N. (2020). Effects of Bacillus megaterium on growth performance, serum biochemical parameters, antioxidant capacity, and immune function in suckling calves. Open Life Sci. 15(1): 1033-1041. doi: 10.1515/biol-2020-0106
Younes, N. A., et al. (2023). Effects of microbial biostimulants (Trichoderma album and Bacillus megaterium) on growth, quality attributes, and yield of onion under field conditions. Heliyon. https://doi.org/10.1016/j.heliyon.2023.e14203
DOI: http://dx.doi.org/10.20527/jps.v11i1.17045
Article Metrics
Abstract view : 234 timesPDF - 148 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Jurnal Pharmascience
Jurnal Pharmascience Published by:
Program Studi Farmasi Universitas Lambung Mangkurat
Banjarbaru, Indonesia
Jurnal Pharmascience is indexed by:
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.