RUANG BARISAN KONVERGEN LACUNARY STATISTIK
Abstract
In this paper, we use the concept of lacunary statistic convergence to construct a linear metric space and then examine its topological properties. We show that the space includes the space of bounded sequence and the space of strong summable Cesaro of order one. Furthermore, the linear metric space is an FK-space but has not AK property.
Keywords
Full Text:
PDFReferences
Akdemir, A. O., Ersoy, M. T., Furkan, H., & Ragusa, M. A. (2022). Some Functional Sections in Topological Sequence Spaces. Hindawi Journal of Function Spaces, 1–7.
Aral, N, D., & Gunal, S. (2020). On M_lambda(m,n)-Statistical Convergence. Hindawi Journal of Mathematics, 1–8.
Basarir, M., & Konca, S. (2014). Weighted Lacunary Statistical Convergence in Locally Solid Riesz Spaces. Filomat, Faculty of Sciences and Mathematics, University of Nis, Serbia, 28(10), 2059–2067.
Bhardwaj, V. K., & Dhawan, S. (2018). Application of f -lacunary statistical convergence to approximation theorems. Journal of Inequalities and Applications, 281, 1–25.
Colak, R., Bektas, C. A., Altinok, H., & Ercan, S. (2016). On Inclusion Relations between Some Sequence Spaces. International Journal of Analysis, 2016, 1–4.
Gokhan, A. (2013). Lacunary Statistical Convergence of Sequences of Real-Valued Functions. Hindawi: Abstract and Applied Analysis, 2013, 1–4.
Leon-Saavedra, F., Listan-Garcia, C., Fernandes, F. J. P., & de la Rosa, M. P. R. (2019). On Statistical Convergence and Strong Cesaro Convergence by Moduli. Journal of Inequalities and Applications, 298, 1–12.
Mursaleen, M., Alotaibi, A., & Sharma, S. K. (2014). Some New Lacunary Strong Convergent Vector-Valued Sequence Spaces. Hidawi: Abstract and Applied Analysis, 2014, 1–8.
Savas, E. (2019). Lacunary Almost Convergence and Some New Sequence Spaces. Filomat, 33(5), 1397–1402.
Sengul, H. (2017). Some Cesaro-Type Summability Spaces Defined By A Modulus Function of Order (alpha, beta). Commun. Fac. Sci. Univ. Ank. Series A1, 66(2), 80–90.
Tamang, K., & Hazarika, B. (2016). Some geometric properties of lacunary Zweier Sequence Spaces of order α. Proyecciones Journal of Mathematics, 35(4), 4810490.
Yaying, T., & Hazarika, B. (2017). Lacunary Arithmetic Statistical Convergence. ArXiv:1703.03780v1. Retrieved from https://doi.org/10.48550/arXiv.1703.03780
DOI: https://doi.org/10.20527/epsilon.v17i2.10258
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN
Indexed by:
EDITORIAL OFFICE
JMMTE is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.