SYARAT PERLU DAN SYARAT CUKUP MATRIKS BERSIH PADA ๐•„๐•„๐Ÿ๐Ÿ(โ„ค)

Rohmalita Rohmalita, Na'imah Hijriati, Saman Abdurrahman

Abstract


This paper describes the condition of a net matrix at ๐•„๐•„2 (โ„ค) and describes the terms and conditions of sufficient net matrix at ๐•„๐•„2 (โ„ค). The result of this study is, ๐‘จ๐‘จ is the 1-net matrix if and only if ๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘ (๐‘จ๐‘จ) -๐‘ก ๐‘ก๐‘ก (๐‘จ๐‘จ) = 0 or -2. Then ๐‘จ๐‘จ is the 0-net matrix if and only if ๐‘จ๐‘จ is the unit matrix, or satisfies one of the equations ๐‘Ž๐‘Ž๐‘Ž -๐‘๐‘๐‘๐‘-๐‘‘๐‘‘ + ๐‘๐‘๐‘๐‘ = ยฑ 1, ๐‘Ž๐‘Ž๐‘Ž -๐‘๐‘๐‘๐‘-๐‘Ž๐‘Ž + ๐‘๐‘๐‘๐‘ = ยฑ 1, ๔€ตซ-๐‘๐‘๔€ตฏ๐‘ค๐‘ค2 + ( ๐‘Ž๐‘Ž-๐‘‘๐‘‘) ๐‘ค๐‘ค๐‘ค๐‘ค + (๐‘) ๐‘ฅ 2+ (๐‘๐‘) ๐‘ค๐‘ค + (๐‘Ž๐‘Ž๐‘Ž -๐‘๐‘๐‘๐‘-๐‘Ž๐‘Ž ยฑ 1) ๐‘ฅ = 0. And the requirement of ๐‘จ๐‘จ is sufficient and ๐‘จ๐‘จ is a 0-net matrix ie if ๐‘ฉ๐‘ฉ = ๔‰‚๐‘Ž๐‘Ž๐‘๐‘00๔‰ƒโˆˆ๐•„๐•„2 (โ„ค) is a 0-net matrix then ๐‘จ๐‘จ is a 0-net matrix.

Keywords


ring, commutative ring, idempotent matrix, unit matrix, net matrix

Full Text:

PDF

References


Anton, H. & C. Rorres. 2004. Aljabar Linier Elementer Versi Aplikasi, edisi ke-8, jilid 1. Erlangga, Jakarta.

Dummit, D.S. & R.M. Foote. 2004. Abstract Algebra, 3th ed. John Wiley & Sons, Inc, USA.

Eves, H. 1968. Elementary Matrix Theory. Allyn and Bacon, Inc, Boston.

Fraleigh, J.B. 2003. A First Course in Abstract Algebra, 7th ed. Adison-Wesley, USA.

Khurana, D. & T.Y. Lam. 2004. Clean Matrices and Unit-regular Matrices. Journal of Algebra. 280: 683-698.

Lang, S. 2005. Undergraduate Algebra, 3th ed. Springer. USA.

Nathanson, M.B. 2000. Elementary Methods in Number Theory. Springer. USA.

Rajeswari, K.N. & R. Aziz. 2009. A Note on Clean Matrices in ๐•„๐•„2(โ„ค). International Journal of Algebra. 3: 241-248.

Shocley, J.E. 1967. Introduction To Number Theory. Holt, Rinehart And Winston, Inc, USA.

Sibley, T.Q. 2012. Idempoten รก la mod. The College Mathematics Journal. 43: 401-404.

Waerden, B.L. van der. 1949. Modern Algebra, Vol I. Frederick Ungar, New York.55




DOI: https://doi.org/10.20527/epsilon.v8i2.111

Refbacks

  • There are currently no refbacks.


Copyright (c) 2014 JURNAL MATEMATIKA MURNI DAN TERAPAN EPSILON

Indexed by:

ย  ย ย ย ย  ย  ย 

ย 

EDITORIAL OFFICEย 

ย  ย  ย  ย  ย  ย 

ย 

ย 

ย 

Creative Commons License
JMMTE is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

ย 

ย 

ย 

ย