KEKONVERGENAN SOLUSI PERSAMAAN DIFERENSIAL BIASA ORDE SATU MENGGUNAKAN METODE ITERASI VARIASIONAL

Dita Apriliani, Akhmad Yusuf, Mohammad Mahfuzh Shiddiq

Abstract


Ordinary differential equation (ODE) is an equation involving derivatives of one or more dependent variables with respect to single independent variable. ODE is grouped into two part; linear and nonlinear. There are some methods to determine the solution of nonlinear ODE, one of them is Variational Iteration Method. This method create a correction functional using general Lagrange multiplier and a restricted variational. The purpose of this research is to prove convergence and solution ordinary differential equation using variational iteration method. This study was conducted by literary method. This result is show that If operator of correction satisfy contraction inequality β€–π‘£π‘£π‘˜π‘˜+1‖≀𝛾𝛾 β€–π‘£π‘£π‘˜π‘˜β€– where 0<𝛾𝛾<1, then series solution from differential equation nonlinear converge to exact solution and can be used to determine the nonlinear solution.

Keywords


ordinary differential equation of first order, variational iteration method, convergence

Full Text:

PDF

References


Gray, A., Greenhalgh, D, Mao, dan Pan, J. 2011. A Stochastic Differential Equation SIS Epidemic Model. Society for Industrial and Apllied Mathematics. 71(3). Hal 876-902.

He Ji-Huan. 2007. Variational iteration methodβ€”Some recent results and new interpretations. Applied Mathematics and Computation. 207 (2007). Hal 3-17.

Kreyszig, E. 1978. Introduction Functional Analysis with Application. New York: John Wiley & Sons.

Purcel, E. J, & Vanberg, D. 1987. Kalkulus dan Geometri Analitis Jilid 1. Edisi Kelima. Erlangga, Jakarta.

Ross, S. L. 1984. Differential Equations. Third Edition. John Wiley & Sons. New York.

Shiddiq, M. Mahfuzh. 2011. Syarat batas serap pada gelombang akustik dua dimensi. Jurnal Matematika dan Terapan Epsilon. 05 (2). Hal. 31-39

Zaid M. O. 2010. A study on the convergence of variational iteration method. Mathematical and Computer Modelling. 51 (2010). Hal 1181-1192.




DOI: https://doi.org/10.20527/epsilon.v11i1.112

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 JURNAL MATEMATIKA MURNI DAN TERAPAN EPSILON

Indexed by:

Β  Β Β Β Β  Β  Β 

Β 

EDITORIAL OFFICEΒ 

Β  Β  Β  Β  Β  Β 

Β 

Β 

Β 

Creative Commons License
JMMTE is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Β 

Β 

Β 

Β