MODEL MATEMATIKA PADA PENYEBARAN MALARIA DI KALIMANTAN SELATAN
Abstract
Kata Kunci : malaria, model SIR, titik ekuibrium, kestabilan, bilangan reproduksi dasar
Full Text:
PDFReferences
Arsin, A.A. 2012. Malaria di Indonesia Tinjauan Aspek Epidemiologi. Masagena Press, Makassar.
Badan Pusat Statistik (BPS) Provinsi Kalimantan Selatan. https://kalsel.bps.go.id/linkTableDinamis/view/id/874
(diakses tanggal 15 Februari 2017)
Bellomo, N.& L. Preziosi. 1995. Modelling Mathematical Method and Scientific Computation . CRC press, Florida.
Dinas Kesehatan Kalimantan Selatan. 2016. Rencana Strategis Dinas Kesehatan Provinsi Kalimantan Selatan. Dinkes Kalsel, Banjarmasin.
Driessche, P & Watmough, J .2005. Reproduction Numbers and Sub-Threshold Endemic Equilibria for Compartmental Models of Disease Transmission. Mathematical Bioscience.
Edward, C.H & Penny, D,E. 2005. Differential Equation & Linear Algebra Edisi Kedua. Peason Prentice Hall, Amerika.
Kermack, W. O. & McKendrick, A.G. 1927. Contributions to the Mathematical Theory of Epidemics. Pross. Royal Soc.A. 115. 700-721.
Momoh, A.A., dkk. 2012. Mathematical Modelling of Malaria Transmission in North Senatorial Zone of Taraba State Nigeria. IOSR Journal of Matematics. 3.7-13.
Perko, L. 1991. Differential Equation an Dynamical systems. Text in Apllied Mathematic vol 7. Springer-Verlag, New York, USA.
Rollback. 2010. Mathematical Modelling to Support Malaria Control and Elimination. WHO Library Cataloguin, Switzerland.
Yulida, Y., Faisal dan Anggraini, D. 2011. Model Epidemik Dua Penyakit Dalam Satu Populasi. Jurnal Matematika Murni dan Terapan Epsilon Vol.5 No.1 Hal.31-42.
DOI: https://doi.org/10.20527/epsilon.v11i2.119
Refbacks
- There are currently no refbacks.
Copyright (c) 2017 JURNAL MATEMATIKA MURNI DAN TERAPAN EPSILON
Indexed by:
EDITORIAL OFFICE
JMMTE is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.