### SIFAT ELEMENTER DARI RING TERGENERALISASI

#### Abstract

Ring is a study of algebraic structures, which is defined as a non-empty set containing two binary operations. Regarding the first binary operation, the set is a group, and the second binary operation is a semigroup, and both operations fulfill the left distributive and right distributive properties. The generalized ring concept is an extension of the ring concept, namely that for the first binary operation, each element has an identity element that is not necessarily the same. This research aims to prove the elementary properties of generalized rings and the properties of generalized rings associated with the *G*-ring structure. Furthermore, this research also proves the properties of subsets related to identity elements in generalized rings. The results of this research are that the fundamental properties of the generalized ring are valid, which are analogous to the fundamental properties of the ring, and sufficient conditions for a generalized ring to be a *G*-ring are obtained. Furthermore, if the generalized ring has a unit element, it forms an abelian group with all elements having the same identity, and the generalized ring contains all identity elements.

#### Keywords

#### Full Text:

PDF#### References

Adeniran, J. O., Akinmoyewa, J. T., Solarin, A. R. T., & Jaiyeola, T. G. (2009). On Some Algebraic Properties of Generalized Groups. 1–9.

Aldwoah, K. (2021). Generalized Groups. Basic and Applied Sciences - Scientific Journal of King Faisal University. 22(2): 1–4.

Caraquil, J.A., & Baldado Jr, M.P. (2022). Some Properties of g-Groups. 15(3): 887-896.

Cuvagcloglu, G., Citil, M. & Bal, A. (2016). On Intuitionistic Fuzzy Generalized Groups. 22(2): 64-70.

Ebrahimi, N. (2016). Local Lie Groups and Local Top Spaces. 24 : 20-24.

Fatehi, F. & Molaei, M.R. (2012). Some Algebraic Properties Of Generalized Rings.

Fatehi, F. & Molaei, M.R. (2012). On completely simple semigroups, Acta Math. Acad. Paedagog. Nyh´azi. (N.S.), 28, 95–102.

Maleki, H., & Molaei, M.R. (2015). T-Spaces. 39(6): 851-863.

Malik, D., Moderson, J. N., & Sen, M. (2007). Introduction to Abstract Algebra. Department of Mathematics.

Mehrabi, M., Molaei, M. R., & Oloomi, A. (2000). Generalized Subgroups and Homomorphisms. 6(2): 1–7.

Molaei, M.R. & Farhangdoost, M.R. (2009). Lie Algebras of A Class of Top Spaces, Balkan J. Geom. Appl., 14, 46–51.

Molaei, M.R. (2001). Generalized Groups, Bul. Inst. Politeh. Ia¸si. Sect¸. I. Mat. Mec. Teor. Fiz., 45, 21–24.

Molaei, M.R. (2003). Generalized Rings, Ital. J. Pure Appl. Math., 12, 105–111.

Molaei, M.R. (2005). Complete Semi-dynamical Systems, J. Dyn. Syst. Geom. Theor., 3, 95–107.

Molaei, M.R. (2005). Mathematical Structures Based on Completely Simple Semigroups, Hadronic Press, Palm Harbor, FL.

Molaei, M.R., Khadekar, G.S. & Farhangdost, M.R. (2006). On Top Spaces, Balkan J. Geom. Appl., 11, 101–106.

Mustafa, H.G. (2021). On the Topological Generalid Crossed Modules. 48(2): 183-193.

Mustafa, H.G., Aslan, H., & Ilhan, I. (2017). Generalized Crossed Modules and Group-Groupoids. 41(6): 1535-1551.

Nazari, Z., Delbaznasab & Kamandar, M. (2019). New Methods For Constructing Generalized Groups, Topological Generalized Groups, and Top Spaces. 7(2): 83-94.

Poursalavati, N.S. (2017). On the Construction of Molaei’s Generalized Hypergroups. 5(3): 106-109.

Romeo, P.G., & Sneha, K.K. (2020). Generalized Groups and Module Groupoids.

Sen, M.K. & Dasgupta, U. (2010). Some Aspects of , An. S¸tiint¸. Univ. ”Al.I. Cuza” Ia¸si. Mat. (N.S.), 56, 253–272.

Toyin, J., & Akinmoyewa. (2009). A study of Some Properties of Generalized Groups. 17(2): 599–626.

DOI: https://doi.org/10.20527/epsilon.v18i1.12619

### Refbacks

- There are currently no refbacks.

Copyright (c) 2024 EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN

**Indexed by:**

**EDITORIAL OFFICE **

JMMTE is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.