SEPUTAR ALJABAR ENVELOPING UNIVERSAL DARI ALJABAR LIE FROBENIUS BERDIMENSI 4

Edi Kurniadi, Badrulfalah Badrulfalah, Kankan Parmikanti

Abstract


Setiap aljabar Lie mempunyai aljabar enveloping universal dan bersifat tunggal. Dalam penelitian ini, dipelajari aljabar enveloping universal dari suatu aljabar Lie Frobenius berdimensi 4. Tujuannya adalah untuk membuktikan bahwa aljabar enveloping universal dari suatu aljabar Lie Frobenius berdimensi 4 bersifat primitif. Pertama-tama, dikonstruksi suatu basis untuk aljabar enveloping universal menggunakan Teorema Poincare-Birkhoff-Witt untuk menentukan secara eksplisit aljabar enveloping universalnya dan langkah kedua, menentukan karakteristik aljabar enveloping universal hasil konstruksi. Hasil dalam penelitian ini menunjukkan bahwa setiap aljabar enveloping universal dari aljabar Lie Frobenius berdimensi 4 senantiasa bersifat primitif.


Keywords


Aljabar Lie Frobenius, aljabar enveloping universal, aljabar primitif, aljabar tensor.

Full Text:

PDF

References


Alvarez, M. A., Rodríguez-Vallarte, M. C., & Salgado, G. (2018). Contact and Frobenius solvable Lie algebras with abelian nilradical. Communications in Algebra, 46(10), 4344–4354. https://doi.org/10.1080/00927872.2018.1439048

Diatta, A., & Manga, B. (2014). On Properties of Principal Elements of Frobenius Lie Algebras . Journal of Lie Theory, 24(3), 849–864.

Diatta, A., Manga, B., & Mbaye, A. (2020). On systems of commuting matrices, Frobenius Lie algebras and Gerstenhaber’s Theorem. http://arxiv.org/abs/2002.08737

Gerstenhaber, M., & Giaquinto, A. (2009). The Principal Element of a Frobenius Lie Algebra. Letters in Mathematical Physics, 88(1–3), 333–341. https://doi.org/10.1007/s11005-009-0321-8

Hilgert, J., & Neeb, K.-H. (2012). Structure and Geometry of Lie Groups. Springer New York. https://doi.org/10.1007/978-0-387-84794-8

Malcolmson, P. (1992). Enveloping algebras of simple three-dimensional Lie algebras. Journal of Algebra, 146(1), 210–218. https://doi.org/10.1016/0021-8693(92)90064-S

Ooms, A. I. (1974). On Lie algebras having a primitive universal enveloping algebra. Journal of Algebra, 32(3), 488–500. https://doi.org/10.1016/0021-8693(74)90154-9

Ooms, A. I. (1976). On Lie algebras with primitive envelopes, supplements. Proceedings of the American Mathematical Society, 58(1), 67–67. https://doi.org/10.1090/S0002-9939-1976-0430007-6

Ooms, A. I. (2009). Computing invariants and semi-invariants by means of Frobenius Lie algebras. Journal of Algebra, 321(4), 1293–1312. https://doi.org/10.1016/j.jalgebra.2008.10.026

Pham, D. N. (2016). $mathfrak{g}$-quasi-Frobenius Lie algebras. Archivum Mathematicum, 4, 233–262. https://doi.org/10.5817/AM2016-4-233

Rodríguez, J. L. V., Schneider, C., & Usefi, H. (2022). The isomorphism problem for universal enveloping algebras of solvable Lie algebras. Journal of Algebra, 603, 281–306. https://doi.org/10.1016/j.jalgebra.2022.01.035




DOI: https://doi.org/10.20527/epsilon.v18i2.13798

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN (EPSILON: JOURNAL OF PURE AND APPLIED MATHEMATICS)

Indexed by:

          

 

EDITORIAL OFFICE 

           

 

 

 

Creative Commons License
JMMTE is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.