SIFAT-FK RUANG BARISAN CESARO ORLICZ

Haryadi - Haryadi

Abstract


The Cesaro sequence space , ( , which is the FK-space, has been generalized to the Cesaro-Orlicz sequence space . This prompted the study of several properties in  that have been known in . In this paper, the properties of completeness and FK-properties in the Cesaro-Orlicz space are discussed. For this discussion, a modular approach is used. The results of the study show that the space   is a convex modular space. This sequence space is also complete to the Luxemburg norm and has K-properties. Furthermore, this space is a BK-space. These results can be used to study the Kothe-Toeplitz dual, which is an important part of the transformation of the infinite matrix


Keywords


modular; Cesaro-Orlicz; FK; BK

Full Text:

PDF

References


Akdemir, A. O., Ersoy, M. T., Furkan, H., & Ragusa, M. A. (2022). Some Functional Sections in Topological Sequence Spaces. Journal of Function Spaces. Vol. 2022, 1–7.

https://doi.org/10.1155/2022/6449630

Bala, I. (2012). On Cesàro Sequence Space Defined by An Orlicz Function. Communications in Mathematics and Applications. Vol. 3(2), 197–204.

http://www.rgnpublications.com

Banas, J., & Mursaleen, M. (2014). Sequence Spaces and Measures of Noncompactness with Applications to Differential and Integral Equations. Springer.

Bhardwaj, V. K., & Gupta, S. (2013). Cesàro Summable Difference Sequence Space. Journal of Inequalities and Applications. Vol. 315, 1–9.

https://doi.org/10.1186/1029-242X-2013-315

Chen, L., Chen, D., & Jiang, Y. (2016). Complex Convexity of Orlicz Modular Sequence Spaces. Journal of Function Spaces. Vol. 2016, 1–6.

https://doi.org/10.1155/2016/5917915

Cui, Y., Hudzik, H., Petrot, N., Suantai, S., & Szymaszkiewicz, A. (2003). Basic Topological and Geometric Properties of Cesàro-Orlicz spaces. Proc. Indian Acad. Sci. (Math. Sci). Vol. 115(4), 461–476.

Et, M. (2017). Generalized Cesàro Summable Difference Sequence Spaces. ITM Web of Conferences. Vol. 13, 1–5.

https://doi.org/10.1051/itmconf/20171301007

Faried, N., & Bakery, A. A. (2010). The Difference Sequence Space Defined on Orlicz-Cesaro Function. Journal of American Science. Vol. 6(10), 25–30.

http://[email protected]

Jalal, T., & Ahmad, R. (2015). A New Generalized Vector-valued Paranormed Sequence Space Using Modulus Function. Malaya J. Mat. Vol. 3(1), 110–118.

Kirişci, M. (2014). The sequence space bv and some applications.

http://arxiv.org/abs/1403.1720

Kozlowski, W. (1988). Modular Function Spaces. Marcer Dekker, Inc.

Krasnosel’skii, M. A., & Rutickii, Y. B. (1961). Convex Functions and Orlicz Spaces (L. Boron, Trans.).

Malkowsky, E., & Veličković, V. (2011). Topologies of Some New Sequence Spaces, Their Duals, and The Graphical Representations of Neighborhoods. Topology and Its Applications. Vol. 158(12), 1369–1380.

https://doi.org/10.1016/j.topol.2011.05.011

Mursaleen, Khan, M., & Qamaruddin. (1999). Difference Sequence Spaces Defined by Orlicz Functions. Demonstratio Mathematica. Vol. XXXII(1), 145–150.

Musielak, J. (1983). Orlicz Spaces and Modular Spaces (A. Dold & B. Eckmann, Eds.). Springer-Verlag.

Rahman, M. F., & Karim, R. (2016). Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping. International Journal of Mathematics and Statistics Invention (IJMSI). Vol. 4(4), 44–50. www.ijmsi.org

Raj, K., Anand, R., & Pandoh, S. (2019). Cesàro Orlicz Sequence Spaces and Their Kothe-Toeplitz Duals. Math. J. Okayama Univ. Vol. 61, 141–158.

Rao, M. M., & Ren, Z. D. (2002). Applications Of Orlicz Spaces. CRC Press.

Rudin, W. (1991). Functional Analysis (2nd ed.). McGraw-Hill.

Saejung, S. (2010). Another Look at Cesàro Sequence Spaces. Journal of Mathematical Analysis and Applications. Vol. 366(2), 530–537.

https://doi.org/10.1016/j.jmaa.2010.01.029

Sengul, H. (2017). Some Cesàro-Type Summability Spaces Defined By A Modulus Function of Order (α,β). Commun.Fac.Sci.Univ.Ank.Series A1. Vol. 66(2), 80–90. https://doi.org/10.1501/Com

Yaying, T., Hazarika, B., Mohiuddine, S. A., & Et, M. (2023). On Sequence Spaces Due to lth Order q-Difference Operator and its Spectrum. Iranian Journal of Science. Vol. 47(4), 1271–1281.

https://doi.org/10.1007/s40995-023-01487-7




DOI: https://doi.org/10.20527/epsilon.v18i2.13899

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN (EPSILON: JOURNAL OF PURE AND APPLIED MATHEMATICS)

Indexed by:

          

 

EDITORIAL OFFICE 

           

 

 

 

Creative Commons License
JMMTE is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.