SIFAT TURUNAN PADA ALJABAR LIE AFFINE BERDIMENSI 6
Abstract
In this paper we study that any derivation of affine Lie algebra of dimension 6, denoted by , is inner. We give another approach to prove it by direct computations of transformation matrix of derivation of . We show that transformation matrix for the derivation of any element in equals to transformation matrix of adjoint representation of its element. Furthermore, we give an alternative to prove that is Frobenius Lie algebra.
Keywords :Affine Lie algebra, Derivation of a Lie algebra, Frobenius Lie algebra
Full Text:
PDFReferences
M. Rais, “La representation du groupe affine,” Ann.Inst.Fourier,Grenoble, vol. 26, pp. 207--237, 1978.
N. Ghegerstega and V. Orlov, “Applications of Aff(2,R)- orbits for quadratic differential systems,” Bul. Acad. S¸TIINT¸E A REPUBLICII Mold. Mat., vol. 2, no. 57, pp. 122--126, 2008.
A. Grossmann, J. Morlet, and T. Paul, “Transform associated to square-integrable group of representations I,” J.Math.Phys, vol. 26, pp. 2473--2479, 1985.
A. Grossmann, J. Morlet, and T. Paul, “Trsansform associated to square-integrable group representations .II. Examples,” Ann.Inst.H.Poincare Phys.Theor, vol. 45, pp. 293--309, 1986.
V. Gayral and et al, “Fourier analysis on the affine group, quantization and noncompact Connes geometries,” J. Noncommutative Geom., vol. 2, pp. 215--261, 2008.
A. Diatta and B. Manga, “On properties of principal elements of frobenius lie algebras,” J. Lie Theory, vol. 24, no. 3, pp. 849–864, 2014.
A. I. Ooms, “Computing invariants and semi-invariants by means of Frobenius Lie algebras,” J. Algebra., vol. 321, pp. 1293--1312, 2009.
J. Hilgert and K.-H. Neeb, Structure and Geometry of Lie Groups. New York: Springer Monographs in Mathematics, Springer, 2012.
V. Ayala, E. Kizil, and I. D. A. Tribuzy, “On an algorithm for finding derivations of lie algebras,” Proyecciones J. Math., vol. 31, no. 1, pp. 81–90, 2012.
A. I. Ooms, “On frobenius Lie algebras,” Comm. Algebra., vol. 8, pp. 13--52, 1980.
DOI: https://doi.org/10.20527/epsilon.v14i1.2198
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 JURNAL MATEMATIKA MURNI DAN TERAPAN EPSILON
Indexed by:
EDITORIAL OFFICE
JMMTE is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.